123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_BACKGROUND_SEGM_HPP
- #define OPENCV_BACKGROUND_SEGM_HPP
- #include "opencv2/core.hpp"
- namespace cv
- {
- //! @addtogroup video_motion
- //! @{
- /** @brief Base class for background/foreground segmentation. :
- The class is only used to define the common interface for the whole family of background/foreground
- segmentation algorithms.
- */
- class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
- {
- public:
- /** @brief Computes a foreground mask.
- @param image Next video frame.
- @param fgmask The output foreground mask as an 8-bit binary image.
- @param learningRate The value between 0 and 1 that indicates how fast the background model is
- learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
- rate. 0 means that the background model is not updated at all, 1 means that the background model
- is completely reinitialized from the last frame.
- */
- CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0;
- /** @brief Computes a background image.
- @param backgroundImage The output background image.
- @note Sometimes the background image can be very blurry, as it contain the average background
- statistics.
- */
- CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0;
- };
- /** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
- The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004
- and @cite Zivkovic2006 .
- */
- class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
- {
- public:
- /** @brief Returns the number of last frames that affect the background model
- */
- CV_WRAP virtual int getHistory() const = 0;
- /** @brief Sets the number of last frames that affect the background model
- */
- CV_WRAP virtual void setHistory(int history) = 0;
- /** @brief Returns the number of gaussian components in the background model
- */
- CV_WRAP virtual int getNMixtures() const = 0;
- /** @brief Sets the number of gaussian components in the background model.
- The model needs to be reinitalized to reserve memory.
- */
- CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization!
- /** @brief Returns the "background ratio" parameter of the algorithm
- If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's
- considered background and added to the model as a center of a new component. It corresponds to TB
- parameter in the paper.
- */
- CV_WRAP virtual double getBackgroundRatio() const = 0;
- /** @brief Sets the "background ratio" parameter of the algorithm
- */
- CV_WRAP virtual void setBackgroundRatio(double ratio) = 0;
- /** @brief Returns the variance threshold for the pixel-model match
- The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
- the background model or not. Related to Cthr from the paper.
- */
- CV_WRAP virtual double getVarThreshold() const = 0;
- /** @brief Sets the variance threshold for the pixel-model match
- */
- CV_WRAP virtual void setVarThreshold(double varThreshold) = 0;
- /** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation
- Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
- existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
- is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg
- value generates more components. A higher Tg value may result in a small number of components but
- they can grow too large.
- */
- CV_WRAP virtual double getVarThresholdGen() const = 0;
- /** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation
- */
- CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0;
- /** @brief Returns the initial variance of each gaussian component
- */
- CV_WRAP virtual double getVarInit() const = 0;
- /** @brief Sets the initial variance of each gaussian component
- */
- CV_WRAP virtual void setVarInit(double varInit) = 0;
- CV_WRAP virtual double getVarMin() const = 0;
- CV_WRAP virtual void setVarMin(double varMin) = 0;
- CV_WRAP virtual double getVarMax() const = 0;
- CV_WRAP virtual void setVarMax(double varMax) = 0;
- /** @brief Returns the complexity reduction threshold
- This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
- is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
- standard Stauffer&Grimson algorithm.
- */
- CV_WRAP virtual double getComplexityReductionThreshold() const = 0;
- /** @brief Sets the complexity reduction threshold
- */
- CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0;
- /** @brief Returns the shadow detection flag
- If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
- details.
- */
- CV_WRAP virtual bool getDetectShadows() const = 0;
- /** @brief Enables or disables shadow detection
- */
- CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
- /** @brief Returns the shadow value
- Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
- in the mask always means background, 255 means foreground.
- */
- CV_WRAP virtual int getShadowValue() const = 0;
- /** @brief Sets the shadow value
- */
- CV_WRAP virtual void setShadowValue(int value) = 0;
- /** @brief Returns the shadow threshold
- A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
- the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
- is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
- *Detecting Moving Shadows...*, IEEE PAMI,2003.
- */
- CV_WRAP virtual double getShadowThreshold() const = 0;
- /** @brief Sets the shadow threshold
- */
- CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
- /** @brief Computes a foreground mask.
- @param image Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.
- @param fgmask The output foreground mask as an 8-bit binary image.
- @param learningRate The value between 0 and 1 that indicates how fast the background model is
- learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
- rate. 0 means that the background model is not updated at all, 1 means that the background model
- is completely reinitialized from the last frame.
- */
- CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) CV_OVERRIDE = 0;
- };
- /** @brief Creates MOG2 Background Subtractor
- @param history Length of the history.
- @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
- to decide whether a pixel is well described by the background model. This parameter does not
- affect the background update.
- @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
- speed a bit, so if you do not need this feature, set the parameter to false.
- */
- CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2>
- createBackgroundSubtractorMOG2(int history=500, double varThreshold=16,
- bool detectShadows=true);
- /** @brief K-nearest neighbours - based Background/Foreground Segmentation Algorithm.
- The class implements the K-nearest neighbours background subtraction described in @cite Zivkovic2006 .
- Very efficient if number of foreground pixels is low.
- */
- class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor
- {
- public:
- /** @brief Returns the number of last frames that affect the background model
- */
- CV_WRAP virtual int getHistory() const = 0;
- /** @brief Sets the number of last frames that affect the background model
- */
- CV_WRAP virtual void setHistory(int history) = 0;
- /** @brief Returns the number of data samples in the background model
- */
- CV_WRAP virtual int getNSamples() const = 0;
- /** @brief Sets the number of data samples in the background model.
- The model needs to be reinitalized to reserve memory.
- */
- CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization!
- /** @brief Returns the threshold on the squared distance between the pixel and the sample
- The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
- close to a data sample.
- */
- CV_WRAP virtual double getDist2Threshold() const = 0;
- /** @brief Sets the threshold on the squared distance
- */
- CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0;
- /** @brief Returns the number of neighbours, the k in the kNN.
- K is the number of samples that need to be within dist2Threshold in order to decide that that
- pixel is matching the kNN background model.
- */
- CV_WRAP virtual int getkNNSamples() const = 0;
- /** @brief Sets the k in the kNN. How many nearest neighbours need to match.
- */
- CV_WRAP virtual void setkNNSamples(int _nkNN) = 0;
- /** @brief Returns the shadow detection flag
- If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
- details.
- */
- CV_WRAP virtual bool getDetectShadows() const = 0;
- /** @brief Enables or disables shadow detection
- */
- CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
- /** @brief Returns the shadow value
- Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
- in the mask always means background, 255 means foreground.
- */
- CV_WRAP virtual int getShadowValue() const = 0;
- /** @brief Sets the shadow value
- */
- CV_WRAP virtual void setShadowValue(int value) = 0;
- /** @brief Returns the shadow threshold
- A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
- the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
- is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
- *Detecting Moving Shadows...*, IEEE PAMI,2003.
- */
- CV_WRAP virtual double getShadowThreshold() const = 0;
- /** @brief Sets the shadow threshold
- */
- CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
- };
- /** @brief Creates KNN Background Subtractor
- @param history Length of the history.
- @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
- whether a pixel is close to that sample. This parameter does not affect the background update.
- @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
- speed a bit, so if you do not need this feature, set the parameter to false.
- */
- CV_EXPORTS_W Ptr<BackgroundSubtractorKNN>
- createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0,
- bool detectShadows=true);
- //! @} video_motion
- } // cv
- #endif
|