123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
- #define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
- #include <algorithm>
- #include <map>
- #include <cassert>
- #include <limits>
- #include <cmath>
- #include "general.h"
- #include "nn_index.h"
- #include "dist.h"
- #include "matrix.h"
- #include "result_set.h"
- #include "heap.h"
- #include "allocator.h"
- #include "random.h"
- #include "saving.h"
- namespace cvflann
- {
- struct HierarchicalClusteringIndexParams : public IndexParams
- {
- HierarchicalClusteringIndexParams(int branching = 32,
- flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
- int trees = 4, int leaf_size = 100)
- {
- (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
- // The branching factor used in the hierarchical clustering
- (*this)["branching"] = branching;
- // Algorithm used for picking the initial cluster centers
- (*this)["centers_init"] = centers_init;
- // number of parallel trees to build
- (*this)["trees"] = trees;
- // maximum leaf size
- (*this)["leaf_size"] = leaf_size;
- }
- };
- /**
- * Hierarchical index
- *
- * Contains a tree constructed through a hierarchical clustering
- * and other information for indexing a set of points for nearest-neighbour matching.
- */
- template <typename Distance>
- class HierarchicalClusteringIndex : public NNIndex<Distance>
- {
- public:
- typedef typename Distance::ElementType ElementType;
- typedef typename Distance::ResultType DistanceType;
- private:
- typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
- /**
- * The function used for choosing the cluster centers.
- */
- centersAlgFunction chooseCenters;
- /**
- * Chooses the initial centers in the k-means clustering in a random manner.
- *
- * Params:
- * k = number of centers
- * vecs = the dataset of points
- * indices = indices in the dataset
- * indices_length = length of indices vector
- *
- */
- void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
- {
- UniqueRandom r(indices_length);
- int index;
- for (index=0; index<k; ++index) {
- bool duplicate = true;
- int rnd;
- while (duplicate) {
- duplicate = false;
- rnd = r.next();
- if (rnd<0) {
- centers_length = index;
- return;
- }
- centers[index] = dsindices[rnd];
- for (int j=0; j<index; ++j) {
- DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
- if (sq<1e-16) {
- duplicate = true;
- }
- }
- }
- }
- centers_length = index;
- }
- /**
- * Chooses the initial centers in the k-means using Gonzales' algorithm
- * so that the centers are spaced apart from each other.
- *
- * Params:
- * k = number of centers
- * vecs = the dataset of points
- * indices = indices in the dataset
- * Returns:
- */
- void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
- {
- int n = indices_length;
- int rnd = rand_int(n);
- assert(rnd >=0 && rnd < n);
- centers[0] = dsindices[rnd];
- int index;
- for (index=1; index<k; ++index) {
- int best_index = -1;
- DistanceType best_val = 0;
- for (int j=0; j<n; ++j) {
- DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
- for (int i=1; i<index; ++i) {
- DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
- if (tmp_dist<dist) {
- dist = tmp_dist;
- }
- }
- if (dist>best_val) {
- best_val = dist;
- best_index = j;
- }
- }
- if (best_index!=-1) {
- centers[index] = dsindices[best_index];
- }
- else {
- break;
- }
- }
- centers_length = index;
- }
- /**
- * Chooses the initial centers in the k-means using the algorithm
- * proposed in the KMeans++ paper:
- * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
- *
- * Implementation of this function was converted from the one provided in Arthur's code.
- *
- * Params:
- * k = number of centers
- * vecs = the dataset of points
- * indices = indices in the dataset
- * Returns:
- */
- void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
- {
- int n = indices_length;
- double currentPot = 0;
- DistanceType* closestDistSq = new DistanceType[n];
- // Choose one random center and set the closestDistSq values
- int index = rand_int(n);
- assert(index >=0 && index < n);
- centers[0] = dsindices[index];
- // Computing distance^2 will have the advantage of even higher probability further to pick new centers
- // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
- for (int i = 0; i < n; i++) {
- closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
- closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
- currentPot += closestDistSq[i];
- }
- const int numLocalTries = 1;
- // Choose each center
- int centerCount;
- for (centerCount = 1; centerCount < k; centerCount++) {
- // Repeat several trials
- double bestNewPot = -1;
- int bestNewIndex = 0;
- for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
- // Choose our center - have to be slightly careful to return a valid answer even accounting
- // for possible rounding errors
- double randVal = rand_double(currentPot);
- for (index = 0; index < n-1; index++) {
- if (randVal <= closestDistSq[index]) break;
- else randVal -= closestDistSq[index];
- }
- // Compute the new potential
- double newPot = 0;
- for (int i = 0; i < n; i++) {
- DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
- newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
- }
- // Store the best result
- if ((bestNewPot < 0)||(newPot < bestNewPot)) {
- bestNewPot = newPot;
- bestNewIndex = index;
- }
- }
- // Add the appropriate center
- centers[centerCount] = dsindices[bestNewIndex];
- currentPot = bestNewPot;
- for (int i = 0; i < n; i++) {
- DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
- closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
- }
- }
- centers_length = centerCount;
- delete[] closestDistSq;
- }
- /**
- * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
- * select the first point of the list as a candidate, then parse the points list. If another
- * point is further than current candidate from the other centers, test if it is a good center
- * of a local aggregation. If it is, replace current candidate by this point. And so on...
- *
- * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
- * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
- * class that pick centers among existing points instead of computing the barycenters, there is a real
- * improvement.
- *
- * Params:
- * k = number of centers
- * vecs = the dataset of points
- * indices = indices in the dataset
- * Returns:
- */
- void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
- {
- const float kSpeedUpFactor = 1.3f;
- int n = indices_length;
- DistanceType* closestDistSq = new DistanceType[n];
- // Choose one random center and set the closestDistSq values
- int index = rand_int(n);
- assert(index >=0 && index < n);
- centers[0] = dsindices[index];
- for (int i = 0; i < n; i++) {
- closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
- }
- // Choose each center
- int centerCount;
- for (centerCount = 1; centerCount < k; centerCount++) {
- // Repeat several trials
- double bestNewPot = -1;
- int bestNewIndex = 0;
- DistanceType furthest = 0;
- for (index = 0; index < n; index++) {
- // We will test only the potential of the points further than current candidate
- if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
- // Compute the new potential
- double newPot = 0;
- for (int i = 0; i < n; i++) {
- newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
- , closestDistSq[i] );
- }
- // Store the best result
- if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
- bestNewPot = newPot;
- bestNewIndex = index;
- furthest = closestDistSq[index];
- }
- }
- }
- // Add the appropriate center
- centers[centerCount] = dsindices[bestNewIndex];
- for (int i = 0; i < n; i++) {
- closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
- , closestDistSq[i] );
- }
- }
- centers_length = centerCount;
- delete[] closestDistSq;
- }
- public:
- /**
- * Index constructor
- *
- * Params:
- * inputData = dataset with the input features
- * params = parameters passed to the hierarchical k-means algorithm
- */
- HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
- Distance d = Distance())
- : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
- {
- memoryCounter = 0;
- size_ = dataset.rows;
- veclen_ = dataset.cols;
- branching_ = get_param(params,"branching",32);
- centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
- trees_ = get_param(params,"trees",4);
- leaf_size_ = get_param(params,"leaf_size",100);
- if (centers_init_==FLANN_CENTERS_RANDOM) {
- chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
- }
- else if (centers_init_==FLANN_CENTERS_GONZALES) {
- chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
- }
- else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
- chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
- }
- else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
- chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
- }
- else {
- throw FLANNException("Unknown algorithm for choosing initial centers.");
- }
- trees_ = get_param(params,"trees",4);
- root = new NodePtr[trees_];
- indices = new int*[trees_];
- for (int i=0; i<trees_; ++i) {
- root[i] = NULL;
- indices[i] = NULL;
- }
- }
- HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
- HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
- /**
- * Index destructor.
- *
- * Release the memory used by the index.
- */
- virtual ~HierarchicalClusteringIndex()
- {
- free_elements();
- if (root!=NULL) {
- delete[] root;
- }
- if (indices!=NULL) {
- delete[] indices;
- }
- }
- /**
- * Release the inner elements of indices[]
- */
- void free_elements()
- {
- if (indices!=NULL) {
- for(int i=0; i<trees_; ++i) {
- if (indices[i]!=NULL) {
- delete[] indices[i];
- indices[i] = NULL;
- }
- }
- }
- }
- /**
- * Returns size of index.
- */
- size_t size() const CV_OVERRIDE
- {
- return size_;
- }
- /**
- * Returns the length of an index feature.
- */
- size_t veclen() const CV_OVERRIDE
- {
- return veclen_;
- }
- /**
- * Computes the inde memory usage
- * Returns: memory used by the index
- */
- int usedMemory() const CV_OVERRIDE
- {
- return pool.usedMemory+pool.wastedMemory+memoryCounter;
- }
- /**
- * Builds the index
- */
- void buildIndex() CV_OVERRIDE
- {
- if (branching_<2) {
- throw FLANNException("Branching factor must be at least 2");
- }
- free_elements();
- for (int i=0; i<trees_; ++i) {
- indices[i] = new int[size_];
- for (size_t j=0; j<size_; ++j) {
- indices[i][j] = (int)j;
- }
- root[i] = pool.allocate<Node>();
- computeClustering(root[i], indices[i], (int)size_, branching_,0);
- }
- }
- flann_algorithm_t getType() const CV_OVERRIDE
- {
- return FLANN_INDEX_HIERARCHICAL;
- }
- void saveIndex(FILE* stream) CV_OVERRIDE
- {
- save_value(stream, branching_);
- save_value(stream, trees_);
- save_value(stream, centers_init_);
- save_value(stream, leaf_size_);
- save_value(stream, memoryCounter);
- for (int i=0; i<trees_; ++i) {
- save_value(stream, *indices[i], size_);
- save_tree(stream, root[i], i);
- }
- }
- void loadIndex(FILE* stream) CV_OVERRIDE
- {
- free_elements();
- if (root!=NULL) {
- delete[] root;
- }
- if (indices!=NULL) {
- delete[] indices;
- }
- load_value(stream, branching_);
- load_value(stream, trees_);
- load_value(stream, centers_init_);
- load_value(stream, leaf_size_);
- load_value(stream, memoryCounter);
- indices = new int*[trees_];
- root = new NodePtr[trees_];
- for (int i=0; i<trees_; ++i) {
- indices[i] = new int[size_];
- load_value(stream, *indices[i], size_);
- load_tree(stream, root[i], i);
- }
- params["algorithm"] = getType();
- params["branching"] = branching_;
- params["trees"] = trees_;
- params["centers_init"] = centers_init_;
- params["leaf_size"] = leaf_size_;
- }
- /**
- * Find set of nearest neighbors to vec. Their indices are stored inside
- * the result object.
- *
- * Params:
- * result = the result object in which the indices of the nearest-neighbors are stored
- * vec = the vector for which to search the nearest neighbors
- * searchParams = parameters that influence the search algorithm (checks)
- */
- void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
- {
- int maxChecks = get_param(searchParams,"checks",32);
- // Priority queue storing intermediate branches in the best-bin-first search
- Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
- std::vector<bool> checked(size_,false);
- int checks = 0;
- for (int i=0; i<trees_; ++i) {
- findNN(root[i], result, vec, checks, maxChecks, heap, checked);
- }
- BranchSt branch;
- while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
- NodePtr node = branch.node;
- findNN(node, result, vec, checks, maxChecks, heap, checked);
- }
- assert(result.full());
- delete heap;
- }
- IndexParams getParameters() const CV_OVERRIDE
- {
- return params;
- }
- private:
- /**
- * Struture representing a node in the hierarchical k-means tree.
- */
- struct Node
- {
- /**
- * The cluster center index
- */
- int pivot;
- /**
- * The cluster size (number of points in the cluster)
- */
- int size;
- /**
- * Child nodes (only for non-terminal nodes)
- */
- Node** childs;
- /**
- * Node points (only for terminal nodes)
- */
- int* indices;
- /**
- * Level
- */
- int level;
- };
- typedef Node* NodePtr;
- /**
- * Alias definition for a nicer syntax.
- */
- typedef BranchStruct<NodePtr, DistanceType> BranchSt;
- void save_tree(FILE* stream, NodePtr node, int num)
- {
- save_value(stream, *node);
- if (node->childs==NULL) {
- int indices_offset = (int)(node->indices - indices[num]);
- save_value(stream, indices_offset);
- }
- else {
- for(int i=0; i<branching_; ++i) {
- save_tree(stream, node->childs[i], num);
- }
- }
- }
- void load_tree(FILE* stream, NodePtr& node, int num)
- {
- node = pool.allocate<Node>();
- load_value(stream, *node);
- if (node->childs==NULL) {
- int indices_offset;
- load_value(stream, indices_offset);
- node->indices = indices[num] + indices_offset;
- }
- else {
- node->childs = pool.allocate<NodePtr>(branching_);
- for(int i=0; i<branching_; ++i) {
- load_tree(stream, node->childs[i], num);
- }
- }
- }
- void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost)
- {
- cost = 0;
- for (int i=0; i<indices_length; ++i) {
- ElementType* point = dataset[dsindices[i]];
- DistanceType dist = distance(point, dataset[centers[0]], veclen_);
- labels[i] = 0;
- for (int j=1; j<centers_length; ++j) {
- DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
- if (dist>new_dist) {
- labels[i] = j;
- dist = new_dist;
- }
- }
- cost += dist;
- }
- }
- /**
- * The method responsible with actually doing the recursive hierarchical
- * clustering
- *
- * Params:
- * node = the node to cluster
- * indices = indices of the points belonging to the current node
- * branching = the branching factor to use in the clustering
- *
- * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
- */
- void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
- {
- node->size = indices_length;
- node->level = level;
- if (indices_length < leaf_size_) { // leaf node
- node->indices = dsindices;
- std::sort(node->indices,node->indices+indices_length);
- node->childs = NULL;
- return;
- }
- std::vector<int> centers(branching);
- std::vector<int> labels(indices_length);
- int centers_length;
- (this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length);
- if (centers_length<branching) {
- node->indices = dsindices;
- std::sort(node->indices,node->indices+indices_length);
- node->childs = NULL;
- return;
- }
- // assign points to clusters
- DistanceType cost;
- computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost);
- node->childs = pool.allocate<NodePtr>(branching);
- int start = 0;
- int end = start;
- for (int i=0; i<branching; ++i) {
- for (int j=0; j<indices_length; ++j) {
- if (labels[j]==i) {
- std::swap(dsindices[j],dsindices[end]);
- std::swap(labels[j],labels[end]);
- end++;
- }
- }
- node->childs[i] = pool.allocate<Node>();
- node->childs[i]->pivot = centers[i];
- node->childs[i]->indices = NULL;
- computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
- start=end;
- }
- }
- /**
- * Performs one descent in the hierarchical k-means tree. The branches not
- * visited are stored in a priority queue.
- *
- * Params:
- * node = node to explore
- * result = container for the k-nearest neighbors found
- * vec = query points
- * checks = how many points in the dataset have been checked so far
- * maxChecks = maximum dataset points to checks
- */
- void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
- Heap<BranchSt>* heap, std::vector<bool>& checked)
- {
- if (node->childs==NULL) {
- if (checks>=maxChecks) {
- if (result.full()) return;
- }
- for (int i=0; i<node->size; ++i) {
- int index = node->indices[i];
- if (!checked[index]) {
- DistanceType dist = distance(dataset[index], vec, veclen_);
- result.addPoint(dist, index);
- checked[index] = true;
- ++checks;
- }
- }
- }
- else {
- DistanceType* domain_distances = new DistanceType[branching_];
- int best_index = 0;
- domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
- for (int i=1; i<branching_; ++i) {
- domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
- if (domain_distances[i]<domain_distances[best_index]) {
- best_index = i;
- }
- }
- for (int i=0; i<branching_; ++i) {
- if (i!=best_index) {
- heap->insert(BranchSt(node->childs[i],domain_distances[i]));
- }
- }
- delete[] domain_distances;
- findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
- }
- }
- private:
- /**
- * The dataset used by this index
- */
- const Matrix<ElementType> dataset;
- /**
- * Parameters used by this index
- */
- IndexParams params;
- /**
- * Number of features in the dataset.
- */
- size_t size_;
- /**
- * Length of each feature.
- */
- size_t veclen_;
- /**
- * The root node in the tree.
- */
- NodePtr* root;
- /**
- * Array of indices to vectors in the dataset.
- */
- int** indices;
- /**
- * The distance
- */
- Distance distance;
- /**
- * Pooled memory allocator.
- *
- * Using a pooled memory allocator is more efficient
- * than allocating memory directly when there is a large
- * number small of memory allocations.
- */
- PooledAllocator pool;
- /**
- * Memory occupied by the index.
- */
- int memoryCounter;
- /** index parameters */
- int branching_;
- int trees_;
- flann_centers_init_t centers_init_;
- int leaf_size_;
- };
- }
- #endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
|