flann.hpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. /*M///////////////////////////////////////////////////////////////////////////////////////
  2. //
  3. // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  4. //
  5. // By downloading, copying, installing or using the software you agree to this license.
  6. // If you do not agree to this license, do not download, install,
  7. // copy or use the software.
  8. //
  9. //
  10. // License Agreement
  11. // For Open Source Computer Vision Library
  12. //
  13. // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
  14. // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
  15. // Third party copyrights are property of their respective owners.
  16. //
  17. // Redistribution and use in source and binary forms, with or without modification,
  18. // are permitted provided that the following conditions are met:
  19. //
  20. // * Redistribution's of source code must retain the above copyright notice,
  21. // this list of conditions and the following disclaimer.
  22. //
  23. // * Redistribution's in binary form must reproduce the above copyright notice,
  24. // this list of conditions and the following disclaimer in the documentation
  25. // and/or other materials provided with the distribution.
  26. //
  27. // * The name of the copyright holders may not be used to endorse or promote products
  28. // derived from this software without specific prior written permission.
  29. //
  30. // This software is provided by the copyright holders and contributors "as is" and
  31. // any express or implied warranties, including, but not limited to, the implied
  32. // warranties of merchantability and fitness for a particular purpose are disclaimed.
  33. // In no event shall the Intel Corporation or contributors be liable for any direct,
  34. // indirect, incidental, special, exemplary, or consequential damages
  35. // (including, but not limited to, procurement of substitute goods or services;
  36. // loss of use, data, or profits; or business interruption) however caused
  37. // and on any theory of liability, whether in contract, strict liability,
  38. // or tort (including negligence or otherwise) arising in any way out of
  39. // the use of this software, even if advised of the possibility of such damage.
  40. //
  41. //M*/
  42. #ifndef OPENCV_FLANN_HPP
  43. #define OPENCV_FLANN_HPP
  44. #include "opencv2/core.hpp"
  45. #include "opencv2/flann/miniflann.hpp"
  46. #include "opencv2/flann/flann_base.hpp"
  47. /**
  48. @defgroup flann Clustering and Search in Multi-Dimensional Spaces
  49. This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate
  50. Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest
  51. neighbor search in large datasets and for high dimensional features. More information about FLANN
  52. can be found in @cite Muja2009 .
  53. */
  54. namespace cvflann
  55. {
  56. CV_EXPORTS flann_distance_t flann_distance_type();
  57. CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
  58. }
  59. namespace cv
  60. {
  61. namespace flann
  62. {
  63. //! @addtogroup flann
  64. //! @{
  65. template <typename T> struct CvType {};
  66. template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
  67. template <> struct CvType<char> { static int type() { return CV_8S; } };
  68. template <> struct CvType<unsigned short> { static int type() { return CV_16U; } };
  69. template <> struct CvType<short> { static int type() { return CV_16S; } };
  70. template <> struct CvType<int> { static int type() { return CV_32S; } };
  71. template <> struct CvType<float> { static int type() { return CV_32F; } };
  72. template <> struct CvType<double> { static int type() { return CV_64F; } };
  73. // bring the flann parameters into this namespace
  74. using ::cvflann::get_param;
  75. using ::cvflann::print_params;
  76. // bring the flann distances into this namespace
  77. using ::cvflann::L2_Simple;
  78. using ::cvflann::L2;
  79. using ::cvflann::L1;
  80. using ::cvflann::MinkowskiDistance;
  81. using ::cvflann::MaxDistance;
  82. using ::cvflann::HammingLUT;
  83. using ::cvflann::Hamming;
  84. using ::cvflann::Hamming2;
  85. using ::cvflann::HistIntersectionDistance;
  86. using ::cvflann::HellingerDistance;
  87. using ::cvflann::ChiSquareDistance;
  88. using ::cvflann::KL_Divergence;
  89. /** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which
  90. the index is built.
  91. `Distance` functor specifies the metric to be used to calculate the distance between two points.
  92. There are several `Distance` functors that are readily available:
  93. @link cvflann::L2_Simple cv::flann::L2_Simple @endlink- Squared Euclidean distance functor.
  94. This is the simpler, unrolled version. This is preferable for very low dimensionality data (eg 3D points)
  95. @link cvflann::L2 cv::flann::L2 @endlink- Squared Euclidean distance functor, optimized version.
  96. @link cvflann::L1 cv::flann::L1 @endlink - Manhattan distance functor, optimized version.
  97. @link cvflann::MinkowskiDistance cv::flann::MinkowskiDistance @endlink - The Minkowsky distance functor.
  98. This is highly optimised with loop unrolling.
  99. The computation of squared root at the end is omitted for efficiency.
  100. @link cvflann::MaxDistance cv::flann::MaxDistance @endlink - The max distance functor. It computes the
  101. maximum distance between two vectors. This distance is not a valid kdtree distance, it's not
  102. dimensionwise additive.
  103. @link cvflann::HammingLUT cv::flann::HammingLUT @endlink - %Hamming distance functor. It counts the bit
  104. differences between two strings using a lookup table implementation.
  105. @link cvflann::Hamming cv::flann::Hamming @endlink - %Hamming distance functor. Population count is
  106. performed using library calls, if available. Lookup table implementation is used as a fallback.
  107. @link cvflann::Hamming2 cv::flann::Hamming2 @endlink- %Hamming distance functor. Population count is
  108. implemented in 12 arithmetic operations (one of which is multiplication).
  109. @link cvflann::HistIntersectionDistance cv::flann::HistIntersectionDistance @endlink - The histogram
  110. intersection distance functor.
  111. @link cvflann::HellingerDistance cv::flann::HellingerDistance @endlink - The Hellinger distance functor.
  112. @link cvflann::ChiSquareDistance cv::flann::ChiSquareDistance @endlink - The chi-square distance functor.
  113. @link cvflann::KL_Divergence cv::flann::KL_Divergence @endlink - The Kullback-Leibler divergence functor.
  114. Although the provided implementations cover a vast range of cases, it is also possible to use
  115. a custom implementation. The distance functor is a class whose `operator()` computes the distance
  116. between two features. If the distance is also a kd-tree compatible distance, it should also provide an
  117. `accum_dist()` method that computes the distance between individual feature dimensions.
  118. In addition to `operator()` and `accum_dist()`, a distance functor should also define the
  119. `ElementType` and the `ResultType` as the types of the elements it operates on and the type of the
  120. result it computes. If a distance functor can be used as a kd-tree distance (meaning that the full
  121. distance between a pair of features can be accumulated from the partial distances between the
  122. individual dimensions) a typedef `is_kdtree_distance` should be present inside the distance functor.
  123. If the distance is not a kd-tree distance, but it's a distance in a vector space (the individual
  124. dimensions of the elements it operates on can be accessed independently) a typedef
  125. `is_vector_space_distance` should be defined inside the functor. If neither typedef is defined, the
  126. distance is assumed to be a metric distance and will only be used with indexes operating on
  127. generic metric distances.
  128. */
  129. template <typename Distance>
  130. class GenericIndex
  131. {
  132. public:
  133. typedef typename Distance::ElementType ElementType;
  134. typedef typename Distance::ResultType DistanceType;
  135. /** @brief Constructs a nearest neighbor search index for a given dataset.
  136. @param features Matrix of containing the features(points) to index. The size of the matrix is
  137. num_features x feature_dimensionality and the data type of the elements in the matrix must
  138. coincide with the type of the index.
  139. @param params Structure containing the index parameters. The type of index that will be
  140. constructed depends on the type of this parameter. See the description.
  141. @param distance
  142. The method constructs a fast search structure from a set of features using the specified algorithm
  143. with specified parameters, as defined by params. params is a reference to one of the following class
  144. IndexParams descendants:
  145. - **LinearIndexParams** When passing an object of this type, the index will perform a linear,
  146. brute-force search. :
  147. @code
  148. struct LinearIndexParams : public IndexParams
  149. {
  150. };
  151. @endcode
  152. - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of
  153. a set of randomized kd-trees which will be searched in parallel. :
  154. @code
  155. struct KDTreeIndexParams : public IndexParams
  156. {
  157. KDTreeIndexParams( int trees = 4 );
  158. };
  159. @endcode
  160. - **KMeansIndexParams** When passing an object of this type the index constructed will be a
  161. hierarchical k-means tree. :
  162. @code
  163. struct KMeansIndexParams : public IndexParams
  164. {
  165. KMeansIndexParams(
  166. int branching = 32,
  167. int iterations = 11,
  168. flann_centers_init_t centers_init = CENTERS_RANDOM,
  169. float cb_index = 0.2 );
  170. };
  171. @endcode
  172. - **CompositeIndexParams** When using a parameters object of this type the index created
  173. combines the randomized kd-trees and the hierarchical k-means tree. :
  174. @code
  175. struct CompositeIndexParams : public IndexParams
  176. {
  177. CompositeIndexParams(
  178. int trees = 4,
  179. int branching = 32,
  180. int iterations = 11,
  181. flann_centers_init_t centers_init = CENTERS_RANDOM,
  182. float cb_index = 0.2 );
  183. };
  184. @endcode
  185. - **LshIndexParams** When using a parameters object of this type the index created uses
  186. multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
  187. by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd
  188. International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007) :
  189. @code
  190. struct LshIndexParams : public IndexParams
  191. {
  192. LshIndexParams(
  193. unsigned int table_number,
  194. unsigned int key_size,
  195. unsigned int multi_probe_level );
  196. };
  197. @endcode
  198. - **AutotunedIndexParams** When passing an object of this type the index created is
  199. automatically tuned to offer the best performance, by choosing the optimal index type
  200. (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :
  201. @code
  202. struct AutotunedIndexParams : public IndexParams
  203. {
  204. AutotunedIndexParams(
  205. float target_precision = 0.9,
  206. float build_weight = 0.01,
  207. float memory_weight = 0,
  208. float sample_fraction = 0.1 );
  209. };
  210. @endcode
  211. - **SavedIndexParams** This object type is used for loading a previously saved index from the
  212. disk. :
  213. @code
  214. struct SavedIndexParams : public IndexParams
  215. {
  216. SavedIndexParams( String filename );
  217. };
  218. @endcode
  219. */
  220. GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
  221. ~GenericIndex();
  222. /** @brief Performs a K-nearest neighbor search for a given query point using the index.
  223. @param query The query point
  224. @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have
  225. at least knn size.
  226. @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have
  227. at least knn size.
  228. @param knn Number of nearest neighbors to search for.
  229. @param params SearchParams
  230. */
  231. void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
  232. std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
  233. void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
  234. /** @brief Performs a radius nearest neighbor search for a given query point using the index.
  235. @param query The query point.
  236. @param indices Vector that will contain the indices of the nearest neighbors found.
  237. @param dists Vector that will contain the distances to the nearest neighbors found. It has the same
  238. number of elements as indices.
  239. @param radius The search radius.
  240. @param params SearchParams
  241. This function returns the number of nearest neighbors found.
  242. */
  243. int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
  244. std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
  245. int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
  246. DistanceType radius, const ::cvflann::SearchParams& params);
  247. void save(String filename) { nnIndex->save(filename); }
  248. int veclen() const { return nnIndex->veclen(); }
  249. int size() const { return nnIndex->size(); }
  250. ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
  251. CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
  252. private:
  253. ::cvflann::Index<Distance>* nnIndex;
  254. };
  255. //! @cond IGNORED
  256. #define FLANN_DISTANCE_CHECK \
  257. if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
  258. printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
  259. "the distance using cvflann::set_distance_type. This is no longer working as expected "\
  260. "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
  261. "for example for L1 distance use: GenericIndex< L1<float> > \n"); \
  262. }
  263. template <typename Distance>
  264. GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
  265. {
  266. CV_Assert(dataset.type() == CvType<ElementType>::type());
  267. CV_Assert(dataset.isContinuous());
  268. ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
  269. nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
  270. FLANN_DISTANCE_CHECK
  271. nnIndex->buildIndex();
  272. }
  273. template <typename Distance>
  274. GenericIndex<Distance>::~GenericIndex()
  275. {
  276. delete nnIndex;
  277. }
  278. template <typename Distance>
  279. void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
  280. {
  281. ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
  282. ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
  283. ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
  284. FLANN_DISTANCE_CHECK
  285. nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
  286. }
  287. template <typename Distance>
  288. void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
  289. {
  290. CV_Assert(queries.type() == CvType<ElementType>::type());
  291. CV_Assert(queries.isContinuous());
  292. ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
  293. CV_Assert(indices.type() == CV_32S);
  294. CV_Assert(indices.isContinuous());
  295. ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
  296. CV_Assert(dists.type() == CvType<DistanceType>::type());
  297. CV_Assert(dists.isContinuous());
  298. ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
  299. FLANN_DISTANCE_CHECK
  300. nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
  301. }
  302. template <typename Distance>
  303. int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
  304. {
  305. ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
  306. ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
  307. ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
  308. FLANN_DISTANCE_CHECK
  309. return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
  310. }
  311. template <typename Distance>
  312. int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
  313. {
  314. CV_Assert(query.type() == CvType<ElementType>::type());
  315. CV_Assert(query.isContinuous());
  316. ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
  317. CV_Assert(indices.type() == CV_32S);
  318. CV_Assert(indices.isContinuous());
  319. ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
  320. CV_Assert(dists.type() == CvType<DistanceType>::type());
  321. CV_Assert(dists.isContinuous());
  322. ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
  323. FLANN_DISTANCE_CHECK
  324. return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
  325. }
  326. //! @endcond
  327. /**
  328. * @deprecated Use GenericIndex class instead
  329. */
  330. template <typename T>
  331. class Index_
  332. {
  333. public:
  334. typedef typename L2<T>::ElementType ElementType;
  335. typedef typename L2<T>::ResultType DistanceType;
  336. CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
  337. {
  338. printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
  339. CV_Assert(dataset.type() == CvType<ElementType>::type());
  340. CV_Assert(dataset.isContinuous());
  341. ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
  342. if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
  343. nnIndex_L1 = NULL;
  344. nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
  345. }
  346. else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
  347. nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
  348. nnIndex_L2 = NULL;
  349. }
  350. else {
  351. printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
  352. "For other distance types you must use cv::flann::GenericIndex<Distance>\n");
  353. CV_Assert(0);
  354. }
  355. if (nnIndex_L1) nnIndex_L1->buildIndex();
  356. if (nnIndex_L2) nnIndex_L2->buildIndex();
  357. }
  358. CV_DEPRECATED ~Index_()
  359. {
  360. if (nnIndex_L1) delete nnIndex_L1;
  361. if (nnIndex_L2) delete nnIndex_L2;
  362. }
  363. CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
  364. {
  365. ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
  366. ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
  367. ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
  368. if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
  369. if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
  370. }
  371. CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
  372. {
  373. CV_Assert(queries.type() == CvType<ElementType>::type());
  374. CV_Assert(queries.isContinuous());
  375. ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
  376. CV_Assert(indices.type() == CV_32S);
  377. CV_Assert(indices.isContinuous());
  378. ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
  379. CV_Assert(dists.type() == CvType<DistanceType>::type());
  380. CV_Assert(dists.isContinuous());
  381. ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
  382. if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
  383. if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
  384. }
  385. CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
  386. {
  387. ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
  388. ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
  389. ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
  390. if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
  391. if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
  392. }
  393. CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
  394. {
  395. CV_Assert(query.type() == CvType<ElementType>::type());
  396. CV_Assert(query.isContinuous());
  397. ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
  398. CV_Assert(indices.type() == CV_32S);
  399. CV_Assert(indices.isContinuous());
  400. ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
  401. CV_Assert(dists.type() == CvType<DistanceType>::type());
  402. CV_Assert(dists.isContinuous());
  403. ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
  404. if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
  405. if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
  406. }
  407. CV_DEPRECATED void save(String filename)
  408. {
  409. if (nnIndex_L1) nnIndex_L1->save(filename);
  410. if (nnIndex_L2) nnIndex_L2->save(filename);
  411. }
  412. CV_DEPRECATED int veclen() const
  413. {
  414. if (nnIndex_L1) return nnIndex_L1->veclen();
  415. if (nnIndex_L2) return nnIndex_L2->veclen();
  416. }
  417. CV_DEPRECATED int size() const
  418. {
  419. if (nnIndex_L1) return nnIndex_L1->size();
  420. if (nnIndex_L2) return nnIndex_L2->size();
  421. }
  422. CV_DEPRECATED ::cvflann::IndexParams getParameters()
  423. {
  424. if (nnIndex_L1) return nnIndex_L1->getParameters();
  425. if (nnIndex_L2) return nnIndex_L2->getParameters();
  426. }
  427. CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
  428. {
  429. if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
  430. if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
  431. }
  432. private:
  433. // providing backwards compatibility for L2 and L1 distances (most common)
  434. ::cvflann::Index< L2<ElementType> >* nnIndex_L2;
  435. ::cvflann::Index< L1<ElementType> >* nnIndex_L1;
  436. };
  437. /** @brief Clusters features using hierarchical k-means algorithm.
  438. @param features The points to be clustered. The matrix must have elements of type
  439. Distance::ElementType.
  440. @param centers The centers of the clusters obtained. The matrix must have type
  441. Distance::ResultType. The number of rows in this matrix represents the number of clusters desired,
  442. however, because of the way the cut in the hierarchical tree is chosen, the number of clusters
  443. computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of
  444. clusters desired, where branching is the tree's branching factor (see description of the
  445. KMeansIndexParams).
  446. @param params Parameters used in the construction of the hierarchical k-means tree.
  447. @param d Distance to be used for clustering.
  448. The method clusters the given feature vectors by constructing a hierarchical k-means tree and
  449. choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters
  450. found.
  451. */
  452. template <typename Distance>
  453. int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
  454. Distance d = Distance())
  455. {
  456. typedef typename Distance::ElementType ElementType;
  457. typedef typename Distance::ResultType DistanceType;
  458. CV_Assert(features.type() == CvType<ElementType>::type());
  459. CV_Assert(features.isContinuous());
  460. ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
  461. CV_Assert(centers.type() == CvType<DistanceType>::type());
  462. CV_Assert(centers.isContinuous());
  463. ::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols);
  464. return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
  465. }
  466. /** @deprecated
  467. */
  468. template <typename ELEM_TYPE, typename DIST_TYPE>
  469. CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
  470. {
  471. printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
  472. "cv::flann::hierarchicalClustering<Distance> instead\n");
  473. if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
  474. return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
  475. }
  476. else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
  477. return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
  478. }
  479. else {
  480. printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
  481. "compatibility for the L1 and L2 distances. "
  482. "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
  483. CV_Assert(0);
  484. }
  485. }
  486. //! @} flann
  487. } } // namespace cv::flann
  488. #endif