123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_DNN_DNN_HPP
- #define OPENCV_DNN_DNN_HPP
- #include <vector>
- #include <opencv2/core.hpp>
- #include "../dnn/version.hpp"
- #include <opencv2/dnn/dict.hpp>
- namespace cv {
- namespace dnn {
- CV__DNN_INLINE_NS_BEGIN
- //! @addtogroup dnn
- //! @{
- typedef std::vector<int> MatShape;
- /**
- * @brief Enum of computation backends supported by layers.
- * @see Net::setPreferableBackend
- */
- enum Backend
- {
- //! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if
- //! OpenCV is built with Intel's Inference Engine library or
- //! DNN_BACKEND_OPENCV otherwise.
- DNN_BACKEND_DEFAULT,
- DNN_BACKEND_HALIDE,
- DNN_BACKEND_INFERENCE_ENGINE,
- DNN_BACKEND_OPENCV,
- DNN_BACKEND_VKCOM
- };
- /**
- * @brief Enum of target devices for computations.
- * @see Net::setPreferableTarget
- */
- enum Target
- {
- DNN_TARGET_CPU,
- DNN_TARGET_OPENCL,
- DNN_TARGET_OPENCL_FP16,
- DNN_TARGET_MYRIAD,
- DNN_TARGET_VULKAN,
- //! FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
- DNN_TARGET_FPGA
- };
- CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
- CV_EXPORTS std::vector<Target> getAvailableTargets(Backend be);
- /** @brief This class provides all data needed to initialize layer.
- *
- * It includes dictionary with scalar params (which can be read by using Dict interface),
- * blob params #blobs and optional meta information: #name and #type of layer instance.
- */
- class CV_EXPORTS LayerParams : public Dict
- {
- public:
- //TODO: Add ability to name blob params
- std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.
- String name; //!< Name of the layer instance (optional, can be used internal purposes).
- String type; //!< Type name which was used for creating layer by layer factory (optional).
- };
- /**
- * @brief Derivatives of this class encapsulates functions of certain backends.
- */
- class BackendNode
- {
- public:
- BackendNode(int backendId);
- virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.
- int backendId; //!< Backend identifier.
- };
- /**
- * @brief Derivatives of this class wraps cv::Mat for different backends and targets.
- */
- class BackendWrapper
- {
- public:
- BackendWrapper(int backendId, int targetId);
- /**
- * @brief Wrap cv::Mat for specific backend and target.
- * @param[in] targetId Target identifier.
- * @param[in] m cv::Mat for wrapping.
- *
- * Make CPU->GPU data transfer if it's require for the target.
- */
- BackendWrapper(int targetId, const cv::Mat& m);
- /**
- * @brief Make wrapper for reused cv::Mat.
- * @param[in] base Wrapper of cv::Mat that will be reused.
- * @param[in] shape Specific shape.
- *
- * Initialize wrapper from another one. It'll wrap the same host CPU
- * memory and mustn't allocate memory on device(i.e. GPU). It might
- * has different shape. Use in case of CPU memory reusing for reuse
- * associated memory on device too.
- */
- BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
- virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.
- /**
- * @brief Transfer data to CPU host memory.
- */
- virtual void copyToHost() = 0;
- /**
- * @brief Indicate that an actual data is on CPU.
- */
- virtual void setHostDirty() = 0;
- int backendId; //!< Backend identifier.
- int targetId; //!< Target identifier.
- };
- class CV_EXPORTS ActivationLayer;
- /** @brief This interface class allows to build new Layers - are building blocks of networks.
- *
- * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
- * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
- */
- class CV_EXPORTS_W Layer : public Algorithm
- {
- public:
- //! List of learned parameters must be stored here to allow read them by using Net::getParam().
- CV_PROP_RW std::vector<Mat> blobs;
- /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
- * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
- * @param[in] input vector of already allocated input blobs
- * @param[out] output vector of already allocated output blobs
- *
- * If this method is called after network has allocated all memory for input and output blobs
- * and before inferencing.
- */
- CV_DEPRECATED_EXTERNAL
- virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
- /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
- * @param[in] inputs vector of already allocated input blobs
- * @param[out] outputs vector of already allocated output blobs
- *
- * If this method is called after network has allocated all memory for input and output blobs
- * and before inferencing.
- */
- CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs);
- /** @brief Given the @p input blobs, computes the output @p blobs.
- * @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead
- * @param[in] input the input blobs.
- * @param[out] output allocated output blobs, which will store results of the computation.
- * @param[out] internals allocated internal blobs
- */
- CV_DEPRECATED_EXTERNAL
- virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals);
- /** @brief Given the @p input blobs, computes the output @p blobs.
- * @param[in] inputs the input blobs.
- * @param[out] outputs allocated output blobs, which will store results of the computation.
- * @param[out] internals allocated internal blobs
- */
- virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
- /** @brief Given the @p input blobs, computes the output @p blobs.
- * @param[in] inputs the input blobs.
- * @param[out] outputs allocated output blobs, which will store results of the computation.
- * @param[out] internals allocated internal blobs
- */
- void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
- /** @brief
- * @overload
- * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
- */
- CV_DEPRECATED_EXTERNAL
- void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
- /** @brief
- * @overload
- * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
- */
- CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs);
- /** @brief Allocates layer and computes output.
- * @deprecated This method will be removed in the future release.
- */
- CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
- CV_IN_OUT std::vector<Mat> &internals);
- /** @brief Returns index of input blob into the input array.
- * @param inputName label of input blob
- *
- * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
- * This method maps label of input blob to its index into input vector.
- */
- virtual int inputNameToIndex(String inputName);
- /** @brief Returns index of output blob in output array.
- * @see inputNameToIndex()
- */
- CV_WRAP virtual int outputNameToIndex(const String& outputName);
- /**
- * @brief Ask layer if it support specific backend for doing computations.
- * @param[in] backendId computation backend identifier.
- * @see Backend
- */
- virtual bool supportBackend(int backendId);
- /**
- * @brief Returns Halide backend node.
- * @param[in] inputs Input Halide buffers.
- * @see BackendNode, BackendWrapper
- *
- * Input buffers should be exactly the same that will be used in forward invocations.
- * Despite we can use Halide::ImageParam based on input shape only,
- * it helps prevent some memory management issues (if something wrong,
- * Halide tests will be failed).
- */
- virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
- virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs);
- virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs);
- /**
- * @brief Automatic Halide scheduling based on layer hyper-parameters.
- * @param[in] node Backend node with Halide functions.
- * @param[in] inputs Blobs that will be used in forward invocations.
- * @param[in] outputs Blobs that will be used in forward invocations.
- * @param[in] targetId Target identifier
- * @see BackendNode, Target
- *
- * Layer don't use own Halide::Func members because we can have applied
- * layers fusing. In this way the fused function should be scheduled.
- */
- virtual void applyHalideScheduler(Ptr<BackendNode>& node,
- const std::vector<Mat*> &inputs,
- const std::vector<Mat> &outputs,
- int targetId) const;
- /**
- * @brief Implement layers fusing.
- * @param[in] node Backend node of bottom layer.
- * @see BackendNode
- *
- * Actual for graph-based backends. If layer attached successfully,
- * returns non-empty cv::Ptr to node of the same backend.
- * Fuse only over the last function.
- */
- virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
- /**
- * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
- * @param[in] layer The subsequent activation layer.
- *
- * Returns true if the activation layer has been attached successfully.
- */
- virtual bool setActivation(const Ptr<ActivationLayer>& layer);
- /**
- * @brief Try to fuse current layer with a next one
- * @param[in] top Next layer to be fused.
- * @returns True if fusion was performed.
- */
- virtual bool tryFuse(Ptr<Layer>& top);
- /**
- * @brief Returns parameters of layers with channel-wise multiplication and addition.
- * @param[out] scale Channel-wise multipliers. Total number of values should
- * be equal to number of channels.
- * @param[out] shift Channel-wise offsets. Total number of values should
- * be equal to number of channels.
- *
- * Some layers can fuse their transformations with further layers.
- * In example, convolution + batch normalization. This way base layer
- * use weights from layer after it. Fused layer is skipped.
- * By default, @p scale and @p shift are empty that means layer has no
- * element-wise multiplications or additions.
- */
- virtual void getScaleShift(Mat& scale, Mat& shift) const;
- /**
- * @brief "Deattaches" all the layers, attached to particular layer.
- */
- virtual void unsetAttached();
- virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
- const int requiredOutputs,
- std::vector<MatShape> &outputs,
- std::vector<MatShape> &internals) const;
- virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
- const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
- CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
- CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
- CV_PROP int preferableTarget; //!< prefer target for layer forwarding
- Layer();
- explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields.
- void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields.
- virtual ~Layer();
- };
- /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
- *
- * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
- * and edges specify relationships between layers inputs and outputs.
- *
- * Each network layer has unique integer id and unique string name inside its network.
- * LayerId can store either layer name or layer id.
- *
- * This class supports reference counting of its instances, i. e. copies point to the same instance.
- */
- class CV_EXPORTS_W_SIMPLE Net
- {
- public:
- CV_WRAP Net(); //!< Default constructor.
- CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
- /** @brief Create a network from Intel's Model Optimizer intermediate representation.
- * @param[in] xml XML configuration file with network's topology.
- * @param[in] bin Binary file with trained weights.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin);
- /** Returns true if there are no layers in the network. */
- CV_WRAP bool empty() const;
- /** @brief Adds new layer to the net.
- * @param name unique name of the adding layer.
- * @param type typename of the adding layer (type must be registered in LayerRegister).
- * @param params parameters which will be used to initialize the creating layer.
- * @returns unique identifier of created layer, or -1 if a failure will happen.
- */
- int addLayer(const String &name, const String &type, LayerParams ¶ms);
- /** @brief Adds new layer and connects its first input to the first output of previously added layer.
- * @see addLayer()
- */
- int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms);
- /** @brief Converts string name of the layer to the integer identifier.
- * @returns id of the layer, or -1 if the layer wasn't found.
- */
- CV_WRAP int getLayerId(const String &layer);
- CV_WRAP std::vector<String> getLayerNames() const;
- /** @brief Container for strings and integers. */
- typedef DictValue LayerId;
- /** @brief Returns pointer to layer with specified id or name which the network use. */
- CV_WRAP Ptr<Layer> getLayer(LayerId layerId);
- /** @brief Returns pointers to input layers of specific layer. */
- std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP
- /** @brief Connects output of the first layer to input of the second layer.
- * @param outPin descriptor of the first layer output.
- * @param inpPin descriptor of the second layer input.
- *
- * Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>:
- * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
- * If this part is empty then the network input pseudo layer will be used;
- * - the second optional part of the template <DFN>input_number</DFN>
- * is either number of the layer input, either label one.
- * If this part is omitted then the first layer input will be used.
- *
- * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
- */
- CV_WRAP void connect(String outPin, String inpPin);
- /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
- * @param outLayerId identifier of the first layer
- * @param outNum number of the first layer output
- * @param inpLayerId identifier of the second layer
- * @param inpNum number of the second layer input
- */
- void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
- /** @brief Sets outputs names of the network input pseudo layer.
- *
- * Each net always has special own the network input pseudo layer with id=0.
- * This layer stores the user blobs only and don't make any computations.
- * In fact, this layer provides the only way to pass user data into the network.
- * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
- */
- CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
- /** @brief Runs forward pass to compute output of layer with name @p outputName.
- * @param outputName name for layer which output is needed to get
- * @return blob for first output of specified layer.
- * @details By default runs forward pass for the whole network.
- */
- CV_WRAP Mat forward(const String& outputName = String());
- /** @brief Runs forward pass to compute output of layer with name @p outputName.
- * @param outputBlobs contains all output blobs for specified layer.
- * @param outputName name for layer which output is needed to get
- * @details If @p outputName is empty, runs forward pass for the whole network.
- */
- CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String());
- /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
- * @param outputBlobs contains blobs for first outputs of specified layers.
- * @param outBlobNames names for layers which outputs are needed to get
- */
- CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
- const std::vector<String>& outBlobNames);
- /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
- * @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
- * @param outBlobNames names for layers which outputs are needed to get
- */
- CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
- const std::vector<String>& outBlobNames);
- /**
- * @brief Compile Halide layers.
- * @param[in] scheduler Path to YAML file with scheduling directives.
- * @see setPreferableBackend
- *
- * Schedule layers that support Halide backend. Then compile them for
- * specific target. For layers that not represented in scheduling file
- * or if no manual scheduling used at all, automatic scheduling will be applied.
- */
- CV_WRAP void setHalideScheduler(const String& scheduler);
- /**
- * @brief Ask network to use specific computation backend where it supported.
- * @param[in] backendId backend identifier.
- * @see Backend
- *
- * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT
- * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.
- */
- CV_WRAP void setPreferableBackend(int backendId);
- /**
- * @brief Ask network to make computations on specific target device.
- * @param[in] targetId target identifier.
- * @see Target
- *
- * List of supported combinations backend / target:
- * | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE |
- * |------------------------|--------------------|------------------------------|--------------------|
- * | DNN_TARGET_CPU | + | + | + |
- * | DNN_TARGET_OPENCL | + | + | + |
- * | DNN_TARGET_OPENCL_FP16 | + | + | |
- * | DNN_TARGET_MYRIAD | | + | |
- * | DNN_TARGET_FPGA | | + | |
- */
- CV_WRAP void setPreferableTarget(int targetId);
- /** @brief Sets the new input value for the network
- * @param blob A new blob. Should have CV_32F or CV_8U depth.
- * @param name A name of input layer.
- * @param scalefactor An optional normalization scale.
- * @param mean An optional mean subtraction values.
- * @see connect(String, String) to know format of the descriptor.
- *
- * If scale or mean values are specified, a final input blob is computed
- * as:
- * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
- */
- CV_WRAP void setInput(InputArray blob, const String& name = "",
- double scalefactor = 1.0, const Scalar& mean = Scalar());
- /** @brief Sets the new value for the learned param of the layer.
- * @param layer name or id of the layer.
- * @param numParam index of the layer parameter in the Layer::blobs array.
- * @param blob the new value.
- * @see Layer::blobs
- * @note If shape of the new blob differs from the previous shape,
- * then the following forward pass may fail.
- */
- CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);
- /** @brief Returns parameter blob of the layer.
- * @param layer name or id of the layer.
- * @param numParam index of the layer parameter in the Layer::blobs array.
- * @see Layer::blobs
- */
- CV_WRAP Mat getParam(LayerId layer, int numParam = 0);
- /** @brief Returns indexes of layers with unconnected outputs.
- */
- CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
- /** @brief Returns names of layers with unconnected outputs.
- */
- CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;
- /** @brief Returns input and output shapes for all layers in loaded model;
- * preliminary inferencing isn't necessary.
- * @param netInputShapes shapes for all input blobs in net input layer.
- * @param layersIds output parameter for layer IDs.
- * @param inLayersShapes output parameter for input layers shapes;
- * order is the same as in layersIds
- * @param outLayersShapes output parameter for output layers shapes;
- * order is the same as in layersIds
- */
- CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
- CV_OUT std::vector<int>& layersIds,
- CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
- CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
- /** @overload */
- CV_WRAP void getLayersShapes(const MatShape& netInputShape,
- CV_OUT std::vector<int>& layersIds,
- CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
- CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
- /** @brief Returns input and output shapes for layer with specified
- * id in loaded model; preliminary inferencing isn't necessary.
- * @param netInputShape shape input blob in net input layer.
- * @param layerId id for layer.
- * @param inLayerShapes output parameter for input layers shapes;
- * order is the same as in layersIds
- * @param outLayerShapes output parameter for output layers shapes;
- * order is the same as in layersIds
- */
- void getLayerShapes(const MatShape& netInputShape,
- const int layerId,
- CV_OUT std::vector<MatShape>& inLayerShapes,
- CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
- /** @overload */
- void getLayerShapes(const std::vector<MatShape>& netInputShapes,
- const int layerId,
- CV_OUT std::vector<MatShape>& inLayerShapes,
- CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
- /** @brief Computes FLOP for whole loaded model with specified input shapes.
- * @param netInputShapes vector of shapes for all net inputs.
- * @returns computed FLOP.
- */
- CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
- /** @overload */
- CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
- /** @overload */
- CV_WRAP int64 getFLOPS(const int layerId,
- const std::vector<MatShape>& netInputShapes) const;
- /** @overload */
- CV_WRAP int64 getFLOPS(const int layerId,
- const MatShape& netInputShape) const;
- /** @brief Returns list of types for layer used in model.
- * @param layersTypes output parameter for returning types.
- */
- CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
- /** @brief Returns count of layers of specified type.
- * @param layerType type.
- * @returns count of layers
- */
- CV_WRAP int getLayersCount(const String& layerType) const;
- /** @brief Computes bytes number which are required to store
- * all weights and intermediate blobs for model.
- * @param netInputShapes vector of shapes for all net inputs.
- * @param weights output parameter to store resulting bytes for weights.
- * @param blobs output parameter to store resulting bytes for intermediate blobs.
- */
- void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
- /** @overload */
- CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
- /** @overload */
- CV_WRAP void getMemoryConsumption(const int layerId,
- const std::vector<MatShape>& netInputShapes,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
- /** @overload */
- CV_WRAP void getMemoryConsumption(const int layerId,
- const MatShape& netInputShape,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
- /** @brief Computes bytes number which are required to store
- * all weights and intermediate blobs for each layer.
- * @param netInputShapes vector of shapes for all net inputs.
- * @param layerIds output vector to save layer IDs.
- * @param weights output parameter to store resulting bytes for weights.
- * @param blobs output parameter to store resulting bytes for intermediate blobs.
- */
- void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
- CV_OUT std::vector<int>& layerIds,
- CV_OUT std::vector<size_t>& weights,
- CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
- /** @overload */
- void getMemoryConsumption(const MatShape& netInputShape,
- CV_OUT std::vector<int>& layerIds,
- CV_OUT std::vector<size_t>& weights,
- CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
- /** @brief Enables or disables layer fusion in the network.
- * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
- */
- CV_WRAP void enableFusion(bool fusion);
- /** @brief Returns overall time for inference and timings (in ticks) for layers.
- * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
- * in this case zero ticks count will be return for that skipped layers.
- * @param timings vector for tick timings for all layers.
- * @return overall ticks for model inference.
- */
- CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
- private:
- struct Impl;
- Ptr<Impl> impl;
- };
- /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param cfgFile path to the .cfg file with text description of the network architecture.
- * @param darknetModel path to the .weights file with learned network.
- * @returns Network object that ready to do forward, throw an exception in failure cases.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
- /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
- * @param bufferModel A buffer contains a content of .weights file with learned network.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
- const std::vector<uchar>& bufferModel = std::vector<uchar>());
- /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
- * @param lenCfg Number of bytes to read from bufferCfg
- * @param bufferModel A buffer contains a content of .weights file with learned network.
- * @param lenModel Number of bytes to read from bufferModel
- * @returns Net object.
- */
- CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
- const char *bufferModel = NULL, size_t lenModel = 0);
- /** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
- * @param prototxt path to the .prototxt file with text description of the network architecture.
- * @param caffeModel path to the .caffemodel file with learned network.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
- /** @brief Reads a network model stored in Caffe model in memory.
- * @param bufferProto buffer containing the content of the .prototxt file
- * @param bufferModel buffer containing the content of the .caffemodel file
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
- const std::vector<uchar>& bufferModel = std::vector<uchar>());
- /** @brief Reads a network model stored in Caffe model in memory.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param bufferProto buffer containing the content of the .prototxt file
- * @param lenProto length of bufferProto
- * @param bufferModel buffer containing the content of the .caffemodel file
- * @param lenModel length of bufferModel
- * @returns Net object.
- */
- CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
- const char *bufferModel = NULL, size_t lenModel = 0);
- /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param model path to the .pb file with binary protobuf description of the network architecture
- * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
- * Resulting Net object is built by text graph using weights from a binary one that
- * let us make it more flexible.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
- /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param bufferModel buffer containing the content of the pb file
- * @param bufferConfig buffer containing the content of the pbtxt file
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
- const std::vector<uchar>& bufferConfig = std::vector<uchar>());
- /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param bufferModel buffer containing the content of the pb file
- * @param lenModel length of bufferModel
- * @param bufferConfig buffer containing the content of the pbtxt file
- * @param lenConfig length of bufferConfig
- */
- CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
- const char *bufferConfig = NULL, size_t lenConfig = 0);
- /**
- * @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
- * @param model path to the file, dumped from Torch by using torch.save() function.
- * @param isBinary specifies whether the network was serialized in ascii mode or binary.
- * @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
- * @returns Net object.
- *
- * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
- * which has various bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- * - nn.SoftMax, nn.LogSoftMax
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true);
- /**
- * @brief Read deep learning network represented in one of the supported formats.
- * @param[in] model Binary file contains trained weights. The following file
- * extensions are expected for models from different frameworks:
- * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pb` (TensorFlow, https://www.tensorflow.org/)
- * * `*.t7` | `*.net` (Torch, http://torch.ch/)
- * * `*.weights` (Darknet, https://pjreddie.com/darknet/)
- * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
- * @param[in] config Text file contains network configuration. It could be a
- * file with the following extensions:
- * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
- * * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
- * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
- * @param[in] framework Explicit framework name tag to determine a format.
- * @returns Net object.
- *
- * This function automatically detects an origin framework of trained model
- * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow,
- * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config
- * arguments does not matter.
- */
- CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");
- /**
- * @brief Read deep learning network represented in one of the supported formats.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param[in] framework Name of origin framework.
- * @param[in] bufferModel A buffer with a content of binary file with weights
- * @param[in] bufferConfig A buffer with a content of text file contains network configuration.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
- const std::vector<uchar>& bufferConfig = std::vector<uchar>());
- /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
- * @warning This function has the same limitations as readNetFromTorch().
- */
- CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
- /** @brief Load a network from Intel's Model Optimizer intermediate representation.
- * @param[in] xml XML configuration file with network's topology.
- * @param[in] bin Binary file with trained weights.
- * @returns Net object.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- CV_EXPORTS_W Net readNetFromModelOptimizer(const String &xml, const String &bin);
- /** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>.
- * @param onnxFile path to the .onnx file with text description of the network architecture.
- * @returns Network object that ready to do forward, throw an exception in failure cases.
- */
- CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile);
- /** @brief Creates blob from .pb file.
- * @param path to the .pb file with input tensor.
- * @returns Mat.
- */
- CV_EXPORTS_W Mat readTensorFromONNX(const String& path);
- /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p image values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
- * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @returns 4-dimensional Mat with NCHW dimensions order.
- */
- CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
- const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
- int ddepth=CV_32F);
- /** @brief Creates 4-dimensional blob from image.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- */
- CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
- const Size& size = Size(), const Scalar& mean = Scalar(),
- bool swapRB=false, bool crop=false, int ddepth=CV_32F);
- /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
- * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @returns 4-dimensional Mat with NCHW dimensions order.
- */
- CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
- Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
- int ddepth=CV_32F);
- /** @brief Creates 4-dimensional blob from series of images.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- */
- CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
- double scalefactor=1.0, Size size = Size(),
- const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
- int ddepth=CV_32F);
- /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
- * (std::vector<cv::Mat>).
- * @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
- * which you would like to extract the images.
- * @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision
- * (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
- * of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
- */
- CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_);
- /** @brief Convert all weights of Caffe network to half precision floating point.
- * @param src Path to origin model from Caffe framework contains single
- * precision floating point weights (usually has `.caffemodel` extension).
- * @param dst Path to destination model with updated weights.
- * @param layersTypes Set of layers types which parameters will be converted.
- * By default, converts only Convolutional and Fully-Connected layers'
- * weights.
- *
- * @note Shrinked model has no origin float32 weights so it can't be used
- * in origin Caffe framework anymore. However the structure of data
- * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
- * So the resulting model may be used there.
- */
- CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
- const std::vector<String>& layersTypes = std::vector<String>());
- /** @brief Create a text representation for a binary network stored in protocol buffer format.
- * @param[in] model A path to binary network.
- * @param[in] output A path to output text file to be created.
- *
- * @note To reduce output file size, trained weights are not included.
- */
- CV_EXPORTS_W void writeTextGraph(const String& model, const String& output);
- /** @brief Performs non maximum suppression given boxes and corresponding scores.
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
- * @param top_k if `>0`, keep at most @p top_k picked indices.
- */
- CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
- const float score_threshold, const float nms_threshold,
- CV_OUT std::vector<int>& indices,
- const float eta = 1.f, const int top_k = 0);
- CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores,
- const float score_threshold, const float nms_threshold,
- CV_OUT std::vector<int>& indices,
- const float eta = 1.f, const int top_k = 0);
- CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores,
- const float score_threshold, const float nms_threshold,
- CV_OUT std::vector<int>& indices,
- const float eta = 1.f, const int top_k = 0);
- //! @}
- CV__DNN_INLINE_NS_END
- }
- }
- #include <opencv2/dnn/layer.hpp>
- #include <opencv2/dnn/dnn.inl.hpp>
- /// @deprecated Include this header directly from application. Automatic inclusion will be removed
- #include <opencv2/dnn/utils/inference_engine.hpp>
- #endif /* OPENCV_DNN_DNN_HPP */
|