1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_CALIB3D_HPP
- #define OPENCV_CALIB3D_HPP
- #include "opencv2/core.hpp"
- #include "opencv2/features2d.hpp"
- #include "opencv2/core/affine.hpp"
- /**
- @defgroup calib3d Camera Calibration and 3D Reconstruction
- The functions in this section use a so-called pinhole camera model. In this model, a scene view is
- formed by projecting 3D points into the image plane using a perspective transformation.
- \f[s \; m' = A [R|t] M'\f]
- or
- \f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
- \begin{bmatrix}
- r_{11} & r_{12} & r_{13} & t_1 \\
- r_{21} & r_{22} & r_{23} & t_2 \\
- r_{31} & r_{32} & r_{33} & t_3
- \end{bmatrix}
- \begin{bmatrix}
- X \\
- Y \\
- Z \\
- 1
- \end{bmatrix}\f]
- where:
- - \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space
- - \f$(u, v)\f$ are the coordinates of the projection point in pixels
- - \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters
- - \f$(cx, cy)\f$ is a principal point that is usually at the image center
- - \f$fx, fy\f$ are the focal lengths expressed in pixel units.
- Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled
- (multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not
- depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is
- fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of
- extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
- rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a
- point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above
- is equivalent to the following (when \f$z \ne 0\f$ ):
- \f[\begin{array}{l}
- \vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\
- x' = x/z \\
- y' = y/z \\
- u = f_x*x' + c_x \\
- v = f_y*y' + c_y
- \end{array}\f]
- The following figure illustrates the pinhole camera model.
- ![Pinhole camera model](pics/pinhole_camera_model.png)
- Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
- So, the above model is extended as:
- \f[\begin{array}{l}
- \vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\
- x' = x/z \\
- y' = y/z \\
- x'' = x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
- y'' = y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
- \text{where} \quad r^2 = x'^2 + y'^2 \\
- u = f_x*x'' + c_x \\
- v = f_y*y'' + c_y
- \end{array}\f]
- \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are
- tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
- coefficients. Higher-order coefficients are not considered in OpenCV.
- The next figures show two common types of radial distortion: barrel distortion (typically \f$ k_1 < 0 \f$) and pincushion distortion (typically \f$ k_1 > 0 \f$).
- ![](pics/distortion_examples.png)
- ![](pics/distortion_examples2.png)
- In some cases the image sensor may be tilted in order to focus an oblique plane in front of the
- camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or
- triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
- \f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07.
- \f[\begin{array}{l}
- s\vecthree{x'''}{y'''}{1} =
- \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
- {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
- {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
- u = f_x*x''' + c_x \\
- v = f_y*y''' + c_y
- \end{array}\f]
- where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$
- and \f$\tau_y\f$, respectively,
- \f[
- R(\tau_x, \tau_y) =
- \vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
- \vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
- \vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
- {0}{\cos(\tau_x)}{\sin(\tau_x)}
- {\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
- \f]
- In the functions below the coefficients are passed or returned as
- \f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
- vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
- coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
- parameters. And they remain the same regardless of the captured image resolution. If, for example, a
- camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
- coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and
- \f$c_y\f$ need to be scaled appropriately.
- The functions below use the above model to do the following:
- - Project 3D points to the image plane given intrinsic and extrinsic parameters.
- - Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
- projections.
- - Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
- pattern (every view is described by several 3D-2D point correspondences).
- - Estimate the relative position and orientation of the stereo camera "heads" and compute the
- *rectification* transformation that makes the camera optical axes parallel.
- @note
- - A calibration sample for 3 cameras in horizontal position can be found at
- opencv_source_code/samples/cpp/3calibration.cpp
- - A calibration sample based on a sequence of images can be found at
- opencv_source_code/samples/cpp/calibration.cpp
- - A calibration sample in order to do 3D reconstruction can be found at
- opencv_source_code/samples/cpp/build3dmodel.cpp
- - A calibration example on stereo calibration can be found at
- opencv_source_code/samples/cpp/stereo_calib.cpp
- - A calibration example on stereo matching can be found at
- opencv_source_code/samples/cpp/stereo_match.cpp
- - (Python) A camera calibration sample can be found at
- opencv_source_code/samples/python/calibrate.py
- @{
- @defgroup calib3d_fisheye Fisheye camera model
- Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
- matrix X) The coordinate vector of P in the camera reference frame is:
- \f[Xc = R X + T\f]
- where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
- and z the 3 coordinates of Xc:
- \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]
- The pinhole projection coordinates of P is [a; b] where
- \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]
- Fisheye distortion:
- \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
- The distorted point coordinates are [x'; y'] where
- \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]
- Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
- \f[u = f_x (x' + \alpha y') + c_x \\
- v = f_y y' + c_y\f]
- @defgroup calib3d_c C API
- @}
- */
- namespace cv
- {
- //! @addtogroup calib3d
- //! @{
- //! type of the robust estimation algorithm
- enum { LMEDS = 4, //!< least-median of squares algorithm
- RANSAC = 8, //!< RANSAC algorithm
- RHO = 16 //!< RHO algorithm
- };
- enum { SOLVEPNP_ITERATIVE = 0,
- SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
- SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
- SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
- SOLVEPNP_UPNP = 4, //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
- SOLVEPNP_AP3P = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
- SOLVEPNP_MAX_COUNT //!< Used for count
- };
- enum { CALIB_CB_ADAPTIVE_THRESH = 1,
- CALIB_CB_NORMALIZE_IMAGE = 2,
- CALIB_CB_FILTER_QUADS = 4,
- CALIB_CB_FAST_CHECK = 8,
- CALIB_CB_EXHAUSTIVE = 16,
- CALIB_CB_ACCURACY = 32
- };
- enum { CALIB_CB_SYMMETRIC_GRID = 1,
- CALIB_CB_ASYMMETRIC_GRID = 2,
- CALIB_CB_CLUSTERING = 4
- };
- enum { CALIB_NINTRINSIC = 18,
- CALIB_USE_INTRINSIC_GUESS = 0x00001,
- CALIB_FIX_ASPECT_RATIO = 0x00002,
- CALIB_FIX_PRINCIPAL_POINT = 0x00004,
- CALIB_ZERO_TANGENT_DIST = 0x00008,
- CALIB_FIX_FOCAL_LENGTH = 0x00010,
- CALIB_FIX_K1 = 0x00020,
- CALIB_FIX_K2 = 0x00040,
- CALIB_FIX_K3 = 0x00080,
- CALIB_FIX_K4 = 0x00800,
- CALIB_FIX_K5 = 0x01000,
- CALIB_FIX_K6 = 0x02000,
- CALIB_RATIONAL_MODEL = 0x04000,
- CALIB_THIN_PRISM_MODEL = 0x08000,
- CALIB_FIX_S1_S2_S3_S4 = 0x10000,
- CALIB_TILTED_MODEL = 0x40000,
- CALIB_FIX_TAUX_TAUY = 0x80000,
- CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
- CALIB_FIX_TANGENT_DIST = 0x200000,
- // only for stereo
- CALIB_FIX_INTRINSIC = 0x00100,
- CALIB_SAME_FOCAL_LENGTH = 0x00200,
- // for stereo rectification
- CALIB_ZERO_DISPARITY = 0x00400,
- CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
- CALIB_USE_EXTRINSIC_GUESS = (1 << 22) //!< for stereoCalibrate
- };
- //! the algorithm for finding fundamental matrix
- enum { FM_7POINT = 1, //!< 7-point algorithm
- FM_8POINT = 2, //!< 8-point algorithm
- FM_LMEDS = 4, //!< least-median algorithm. 7-point algorithm is used.
- FM_RANSAC = 8 //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
- };
- enum HandEyeCalibrationMethod
- {
- CALIB_HAND_EYE_TSAI = 0, //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89
- CALIB_HAND_EYE_PARK = 1, //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94
- CALIB_HAND_EYE_HORAUD = 2, //!< Hand-eye Calibration @cite Horaud95
- CALIB_HAND_EYE_ANDREFF = 3, //!< On-line Hand-Eye Calibration @cite Andreff99
- CALIB_HAND_EYE_DANIILIDIS = 4 //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
- };
- /** @brief Converts a rotation matrix to a rotation vector or vice versa.
- @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
- @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
- @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
- derivatives of the output array components with respect to the input array components.
- \f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos{\theta} I + (1- \cos{\theta} ) r r^T + \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
- Inverse transformation can be also done easily, since
- \f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
- A rotation vector is a convenient and most compact representation of a rotation matrix (since any
- rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
- optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
- */
- CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
- /** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
- An example program about pose estimation from coplanar points
- Check @ref tutorial_homography "the corresponding tutorial" for more details
- */
- /** Levenberg-Marquardt solver. Starting with the specified vector of parameters it
- optimizes the target vector criteria "err"
- (finds local minima of each target vector component absolute value).
- When needed, it calls user-provided callback.
- */
- class CV_EXPORTS LMSolver : public Algorithm
- {
- public:
- class CV_EXPORTS Callback
- {
- public:
- virtual ~Callback() {}
- /**
- computes error and Jacobian for the specified vector of parameters
- @param param the current vector of parameters
- @param err output vector of errors: err_i = actual_f_i - ideal_f_i
- @param J output Jacobian: J_ij = d(err_i)/d(param_j)
- when J=noArray(), it means that it does not need to be computed.
- Dimensionality of error vector and param vector can be different.
- The callback should explicitly allocate (with "create" method) each output array
- (unless it's noArray()).
- */
- virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0;
- };
- /**
- Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
- The final vector of parameters (whether the algorithm converged or not) is stored at the same
- vector. The method returns the number of iterations used. If it's equal to the previously specified
- maxIters, there is a big chance the algorithm did not converge.
- @param param initial/final vector of parameters.
- Note that the dimensionality of parameter space is defined by the size of param vector,
- and the dimensionality of optimized criteria is defined by the size of err vector
- computed by the callback.
- */
- virtual int run(InputOutputArray param) const = 0;
- /**
- Sets the maximum number of iterations
- @param maxIters the number of iterations
- */
- virtual void setMaxIters(int maxIters) = 0;
- /**
- Retrieves the current maximum number of iterations
- */
- virtual int getMaxIters() const = 0;
- /**
- Creates Levenberg-Marquard solver
- @param cb callback
- @param maxIters maximum number of iterations that can be further
- modified using setMaxIters() method.
- */
- static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters);
- };
- /** @brief Finds a perspective transformation between two planes.
- @param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
- or vector\<Point2f\> .
- @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
- a vector\<Point2f\> .
- @param method Method used to compute a homography matrix. The following methods are possible:
- - **0** - a regular method using all the points, i.e., the least squares method
- - **RANSAC** - RANSAC-based robust method
- - **LMEDS** - Least-Median robust method
- - **RHO** - PROSAC-based robust method
- @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
- (used in the RANSAC and RHO methods only). That is, if
- \f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f]
- then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
- it usually makes sense to set this parameter somewhere in the range of 1 to 10.
- @param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
- mask values are ignored.
- @param maxIters The maximum number of RANSAC iterations.
- @param confidence Confidence level, between 0 and 1.
- The function finds and returns the perspective transformation \f$H\f$ between the source and the
- destination planes:
- \f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f]
- so that the back-projection error
- \f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
- is minimized. If the parameter method is set to the default value 0, the function uses all the point
- pairs to compute an initial homography estimate with a simple least-squares scheme.
- However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
- transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
- you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
- random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
- using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
- computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
- LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
- the mask of inliers/outliers.
- Regardless of the method, robust or not, the computed homography matrix is refined further (using
- inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
- re-projection error even more.
- The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
- distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
- correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
- noise is rather small, use the default method (method=0).
- The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
- determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix
- cannot be estimated, an empty one will be returned.
- @sa
- getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
- perspectiveTransform
- */
- CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
- int method = 0, double ransacReprojThreshold = 3,
- OutputArray mask=noArray(), const int maxIters = 2000,
- const double confidence = 0.995);
- /** @overload */
- CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
- OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
- /** @brief Computes an RQ decomposition of 3x3 matrices.
- @param src 3x3 input matrix.
- @param mtxR Output 3x3 upper-triangular matrix.
- @param mtxQ Output 3x3 orthogonal matrix.
- @param Qx Optional output 3x3 rotation matrix around x-axis.
- @param Qy Optional output 3x3 rotation matrix around y-axis.
- @param Qz Optional output 3x3 rotation matrix around z-axis.
- The function computes a RQ decomposition using the given rotations. This function is used in
- decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
- and a rotation matrix.
- It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
- degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
- sequence of rotations about the three principal axes that results in the same orientation of an
- object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
- are only one of the possible solutions.
- */
- CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
- OutputArray Qx = noArray(),
- OutputArray Qy = noArray(),
- OutputArray Qz = noArray());
- /** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.
- @param projMatrix 3x4 input projection matrix P.
- @param cameraMatrix Output 3x3 camera matrix K.
- @param rotMatrix Output 3x3 external rotation matrix R.
- @param transVect Output 4x1 translation vector T.
- @param rotMatrixX Optional 3x3 rotation matrix around x-axis.
- @param rotMatrixY Optional 3x3 rotation matrix around y-axis.
- @param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
- @param eulerAngles Optional three-element vector containing three Euler angles of rotation in
- degrees.
- The function computes a decomposition of a projection matrix into a calibration and a rotation
- matrix and the position of a camera.
- It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
- be used in OpenGL. Note, there is always more than one sequence of rotations about the three
- principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
- tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
- The function is based on RQDecomp3x3 .
- */
- CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
- OutputArray rotMatrix, OutputArray transVect,
- OutputArray rotMatrixX = noArray(),
- OutputArray rotMatrixY = noArray(),
- OutputArray rotMatrixZ = noArray(),
- OutputArray eulerAngles =noArray() );
- /** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
- @param A First multiplied matrix.
- @param B Second multiplied matrix.
- @param dABdA First output derivative matrix d(A\*B)/dA of size
- \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
- @param dABdB Second output derivative matrix d(A\*B)/dB of size
- \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
- The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
- the elements of each of the two input matrices. The function is used to compute the Jacobian
- matrices in stereoCalibrate but can also be used in any other similar optimization function.
- */
- CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
- /** @brief Combines two rotation-and-shift transformations.
- @param rvec1 First rotation vector.
- @param tvec1 First translation vector.
- @param rvec2 Second rotation vector.
- @param tvec2 Second translation vector.
- @param rvec3 Output rotation vector of the superposition.
- @param tvec3 Output translation vector of the superposition.
- @param dr3dr1
- @param dr3dt1
- @param dr3dr2
- @param dr3dt2
- @param dt3dr1
- @param dt3dt1
- @param dt3dr2
- @param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and
- tvec2, respectively.
- The functions compute:
- \f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f]
- where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
- \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.
- Also, the functions can compute the derivatives of the output vectors with regards to the input
- vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
- your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
- function that contains a matrix multiplication.
- */
- CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
- InputArray rvec2, InputArray tvec2,
- OutputArray rvec3, OutputArray tvec3,
- OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
- OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
- OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
- OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
- /** @brief Projects 3D points to an image plane.
- @param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
- vector\<Point3f\> ), where N is the number of points in the view.
- @param rvec Rotation vector. See Rodrigues for details.
- @param tvec Translation vector.
- @param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
- 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
- @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
- vector\<Point2f\> .
- @param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
- points with respect to components of the rotation vector, translation vector, focal lengths,
- coordinates of the principal point and the distortion coefficients. In the old interface different
- components of the jacobian are returned via different output parameters.
- @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
- function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
- matrix.
- The function computes projections of 3D points to the image plane given intrinsic and extrinsic
- camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
- image points coordinates (as functions of all the input parameters) with respect to the particular
- parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
- calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
- re-projection error given the current intrinsic and extrinsic parameters.
- @note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
- passing zero distortion coefficients, you can get various useful partial cases of the function. This
- means that you can compute the distorted coordinates for a sparse set of points or apply a
- perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
- */
- CV_EXPORTS_W void projectPoints( InputArray objectPoints,
- InputArray rvec, InputArray tvec,
- InputArray cameraMatrix, InputArray distCoeffs,
- OutputArray imagePoints,
- OutputArray jacobian = noArray(),
- double aspectRatio = 0 );
- /** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
- An example program about homography from the camera displacement
- Check @ref tutorial_homography "the corresponding tutorial" for more details
- */
- /** @brief Finds an object pose from 3D-2D point correspondences.
- @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
- 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
- @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
- where N is the number of points. vector\<Point2f\> can be also passed here.
- @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
- 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
- assumed.
- @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
- the model coordinate system to the camera coordinate system.
- @param tvec Output translation vector.
- @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
- the provided rvec and tvec values as initial approximations of the rotation and translation
- vectors, respectively, and further optimizes them.
- @param flags Method for solving a PnP problem:
- - **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
- this case the function finds such a pose that minimizes reprojection error, that is the sum
- of squared distances between the observed projections imagePoints and the projected (using
- projectPoints ) objectPoints .
- - **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
- "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
- In this case the function requires exactly four object and image points.
- - **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis
- "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
- In this case the function requires exactly four object and image points.
- - **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
- paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
- - **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
- "A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
- - **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
- F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
- Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
- assuming that both have the same value. Then the cameraMatrix is updated with the estimated
- focal length.
- - **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
- "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). In this case the
- function requires exactly four object and image points.
- The function estimates the object pose given a set of object points, their corresponding image
- projections, as well as the camera matrix and the distortion coefficients, see the figure below
- (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
- and the Z-axis forward).
- ![](pnp.jpg)
- Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
- using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:
- \f[
- \begin{align*}
- \begin{bmatrix}
- u \\
- v \\
- 1
- \end{bmatrix} &=
- \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{M}_w
- \begin{bmatrix}
- X_{w} \\
- Y_{w} \\
- Z_{w} \\
- 1
- \end{bmatrix} \\
- \begin{bmatrix}
- u \\
- v \\
- 1
- \end{bmatrix} &=
- \begin{bmatrix}
- f_x & 0 & c_x \\
- 0 & f_y & c_y \\
- 0 & 0 & 1
- \end{bmatrix}
- \begin{bmatrix}
- 1 & 0 & 0 & 0 \\
- 0 & 1 & 0 & 0 \\
- 0 & 0 & 1 & 0
- \end{bmatrix}
- \begin{bmatrix}
- r_{11} & r_{12} & r_{13} & t_x \\
- r_{21} & r_{22} & r_{23} & t_y \\
- r_{31} & r_{32} & r_{33} & t_z \\
- 0 & 0 & 0 & 1
- \end{bmatrix}
- \begin{bmatrix}
- X_{w} \\
- Y_{w} \\
- Z_{w} \\
- 1
- \end{bmatrix}
- \end{align*}
- \f]
- The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow to transform
- a 3D point expressed in the world frame into the camera frame:
- \f[
- \begin{align*}
- \begin{bmatrix}
- X_c \\
- Y_c \\
- Z_c \\
- 1
- \end{bmatrix} &=
- \hspace{0.2em} ^{c}\bf{M}_w
- \begin{bmatrix}
- X_{w} \\
- Y_{w} \\
- Z_{w} \\
- 1
- \end{bmatrix} \\
- \begin{bmatrix}
- X_c \\
- Y_c \\
- Z_c \\
- 1
- \end{bmatrix} &=
- \begin{bmatrix}
- r_{11} & r_{12} & r_{13} & t_x \\
- r_{21} & r_{22} & r_{23} & t_y \\
- r_{31} & r_{32} & r_{33} & t_z \\
- 0 & 0 & 0 & 1
- \end{bmatrix}
- \begin{bmatrix}
- X_{w} \\
- Y_{w} \\
- Z_{w} \\
- 1
- \end{bmatrix}
- \end{align*}
- \f]
- @note
- - An example of how to use solvePnP for planar augmented reality can be found at
- opencv_source_code/samples/python/plane_ar.py
- - If you are using Python:
- - Numpy array slices won't work as input because solvePnP requires contiguous
- arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
- modules/calib3d/src/solvepnp.cpp version 2.4.9)
- - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
- to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
- which requires 2-channel information.
- - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
- it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
- np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
- - The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
- unstable and sometimes give completely wrong results. If you pass one of these two
- flags, **SOLVEPNP_EPNP** method will be used instead.
- - The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
- methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
- of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
- - With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
- are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
- global solution to converge.
- */
- CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
- InputArray cameraMatrix, InputArray distCoeffs,
- OutputArray rvec, OutputArray tvec,
- bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
- /** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
- @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
- 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
- @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
- where N is the number of points. vector\<Point2f\> can be also passed here.
- @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
- 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
- assumed.
- @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
- the model coordinate system to the camera coordinate system.
- @param tvec Output translation vector.
- @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
- the provided rvec and tvec values as initial approximations of the rotation and translation
- vectors, respectively, and further optimizes them.
- @param iterationsCount Number of iterations.
- @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
- is the maximum allowed distance between the observed and computed point projections to consider it
- an inlier.
- @param confidence The probability that the algorithm produces a useful result.
- @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
- @param flags Method for solving a PnP problem (see solvePnP ).
- The function estimates an object pose given a set of object points, their corresponding image
- projections, as well as the camera matrix and the distortion coefficients. This function finds such
- a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
- projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC
- makes the function resistant to outliers.
- @note
- - An example of how to use solvePNPRansac for object detection can be found at
- opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
- - The default method used to estimate the camera pose for the Minimal Sample Sets step
- is #SOLVEPNP_EPNP. Exceptions are:
- - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
- - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
- - The method used to estimate the camera pose using all the inliers is defined by the
- flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
- the method #SOLVEPNP_EPNP will be used instead.
- */
- CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
- InputArray cameraMatrix, InputArray distCoeffs,
- OutputArray rvec, OutputArray tvec,
- bool useExtrinsicGuess = false, int iterationsCount = 100,
- float reprojectionError = 8.0, double confidence = 0.99,
- OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
- /** @brief Finds an object pose from 3 3D-2D point correspondences.
- @param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
- 1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
- @param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
- vector\<Point2f\> can be also passed here.
- @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
- 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
- assumed.
- @param rvecs Output rotation vectors (see Rodrigues ) that, together with tvecs , brings points from
- the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
- @param tvecs Output translation vectors.
- @param flags Method for solving a P3P problem:
- - **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
- "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
- - **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
- "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
- The function estimates the object pose given 3 object points, their corresponding image
- projections, as well as the camera matrix and the distortion coefficients.
- */
- CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
- InputArray cameraMatrix, InputArray distCoeffs,
- OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
- int flags );
- /** @brief Finds an initial camera matrix from 3D-2D point correspondences.
- @param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
- coordinate space. In the old interface all the per-view vectors are concatenated. See
- calibrateCamera for details.
- @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
- old interface all the per-view vectors are concatenated.
- @param imageSize Image size in pixels used to initialize the principal point.
- @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
- Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .
- The function estimates and returns an initial camera matrix for the camera calibration process.
- Currently, the function only supports planar calibration patterns, which are patterns where each
- object point has z-coordinate =0.
- */
- CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
- InputArrayOfArrays imagePoints,
- Size imageSize, double aspectRatio = 1.0 );
- /** @brief Finds the positions of internal corners of the chessboard.
- @param image Source chessboard view. It must be an 8-bit grayscale or color image.
- @param patternSize Number of inner corners per a chessboard row and column
- ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
- @param corners Output array of detected corners.
- @param flags Various operation flags that can be zero or a combination of the following values:
- - **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
- and white, rather than a fixed threshold level (computed from the average image brightness).
- - **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
- applying fixed or adaptive thresholding.
- - **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
- square-like shape) to filter out false quads extracted at the contour retrieval stage.
- - **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
- and shortcut the call if none is found. This can drastically speed up the call in the
- degenerate condition when no chessboard is observed.
- The function attempts to determine whether the input image is a view of the chessboard pattern and
- locate the internal chessboard corners. The function returns a non-zero value if all of the corners
- are found and they are placed in a certain order (row by row, left to right in every row).
- Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
- a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
- squares touch each other. The detected coordinates are approximate, and to determine their positions
- more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
- different parameters if returned coordinates are not accurate enough.
- Sample usage of detecting and drawing chessboard corners: :
- @code
- Size patternsize(8,6); //interior number of corners
- Mat gray = ....; //source image
- vector<Point2f> corners; //this will be filled by the detected corners
- //CALIB_CB_FAST_CHECK saves a lot of time on images
- //that do not contain any chessboard corners
- bool patternfound = findChessboardCorners(gray, patternsize, corners,
- CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
- + CALIB_CB_FAST_CHECK);
- if(patternfound)
- cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
- TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
- drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
- @endcode
- @note The function requires white space (like a square-thick border, the wider the better) around
- the board to make the detection more robust in various environments. Otherwise, if there is no
- border and the background is dark, the outer black squares cannot be segmented properly and so the
- square grouping and ordering algorithm fails.
- */
- CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
- int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
- /*
- Checks whether the image contains chessboard of the specific size or not.
- If yes, nonzero value is returned.
- */
- CV_EXPORTS_W bool checkChessboard(InputArray img, Size size);
- /** @brief Finds the positions of internal corners of the chessboard using a sector based approach.
- @param image Source chessboard view. It must be an 8-bit grayscale or color image.
- @param patternSize Number of inner corners per a chessboard row and column
- ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
- @param corners Output array of detected corners.
- @param flags Various operation flags that can be zero or a combination of the following values:
- - **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before detection.
- - **CALIB_CB_EXHAUSTIVE ** Run an exhaustive search to improve detection rate.
- - **CALIB_CB_ACCURACY ** Up sample input image to improve sub-pixel accuracy due to aliasing effects.
- This should be used if an accurate camera calibration is required.
- The function is analog to findchessboardCorners but uses a localized radon
- transformation approximated by box filters being more robust to all sort of
- noise, faster on larger images and is able to directly return the sub-pixel
- position of the internal chessboard corners. The Method is based on the paper
- @cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
- Calibration" demonstrating that the returned sub-pixel positions are more
- accurate than the one returned by cornerSubPix allowing a precise camera
- calibration for demanding applications.
- @note The function requires a white boarder with roughly the same width as one
- of the checkerboard fields around the whole board to improve the detection in
- various environments. In addition, because of the localized radon
- transformation it is beneficial to use round corners for the field corners
- which are located on the outside of the board. The following figure illustrates
- a sample checkerboard optimized for the detection. However, any other checkerboard
- can be used as well.
- ![Checkerboard](pics/checkerboard_radon.png)
- */
- CV_EXPORTS_W bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners,int flags=0);
- //! finds subpixel-accurate positions of the chessboard corners
- CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
- /** @brief Renders the detected chessboard corners.
- @param image Destination image. It must be an 8-bit color image.
- @param patternSize Number of inner corners per a chessboard row and column
- (patternSize = cv::Size(points_per_row,points_per_column)).
- @param corners Array of detected corners, the output of findChessboardCorners.
- @param patternWasFound Parameter indicating whether the complete board was found or not. The
- return value of findChessboardCorners should be passed here.
- The function draws individual chessboard corners detected either as red circles if the board was not
- found, or as colored corners connected with lines if the board was found.
- */
- CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
- InputArray corners, bool patternWasFound );
- /** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
- @param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
- @param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
- \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
- 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
- @param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
- the model coordinate system to the camera coordinate system.
- @param tvec Translation vector.
- @param length Length of the painted axes in the same unit than tvec (usually in meters).
- @param thickness Line thickness of the painted axes.
- This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
- OX is drawn in red, OY in green and OZ in blue.
- */
- CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
- InputArray rvec, InputArray tvec, float length, int thickness=3);
- struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
- {
- CV_WRAP CirclesGridFinderParameters();
- CV_PROP_RW cv::Size2f densityNeighborhoodSize;
- CV_PROP_RW float minDensity;
- CV_PROP_RW int kmeansAttempts;
- CV_PROP_RW int minDistanceToAddKeypoint;
- CV_PROP_RW int keypointScale;
- CV_PROP_RW float minGraphConfidence;
- CV_PROP_RW float vertexGain;
- CV_PROP_RW float vertexPenalty;
- CV_PROP_RW float existingVertexGain;
- CV_PROP_RW float edgeGain;
- CV_PROP_RW float edgePenalty;
- CV_PROP_RW float convexHullFactor;
- CV_PROP_RW float minRNGEdgeSwitchDist;
- enum GridType
- {
- SYMMETRIC_GRID, ASYMMETRIC_GRID
- };
- GridType gridType;
- CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
- CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from predicion. Used by CALIB_CB_CLUSTERING.
- };
- #ifndef DISABLE_OPENCV_3_COMPATIBILITY
- typedef CirclesGridFinderParameters CirclesGridFinderParameters2;
- #endif
- /** @brief Finds centers in the grid of circles.
- @param image grid view of input circles; it must be an 8-bit grayscale or color image.
- @param patternSize number of circles per row and column
- ( patternSize = Size(points_per_row, points_per_colum) ).
- @param centers output array of detected centers.
- @param flags various operation flags that can be one of the following values:
- - **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
- - **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
- - **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
- perspective distortions but much more sensitive to background clutter.
- @param blobDetector feature detector that finds blobs like dark circles on light background.
- @param parameters struct for finding circles in a grid pattern.
- The function attempts to determine whether the input image contains a grid of circles. If it is, the
- function locates centers of the circles. The function returns a non-zero value if all of the centers
- have been found and they have been placed in a certain order (row by row, left to right in every
- row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
- Sample usage of detecting and drawing the centers of circles: :
- @code
- Size patternsize(7,7); //number of centers
- Mat gray = ....; //source image
- vector<Point2f> centers; //this will be filled by the detected centers
- bool patternfound = findCirclesGrid(gray, patternsize, centers);
- drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
- @endcode
- @note The function requires white space (like a square-thick border, the wider the better) around
- the board to make the detection more robust in various environments.
- */
- CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
- OutputArray centers, int flags,
- const Ptr<FeatureDetector> &blobDetector,
- const CirclesGridFinderParameters& parameters);
- /** @overload */
- CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
- OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
- const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
- /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
- @param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
- the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
- vector contains as many elements as the number of the pattern views. If the same calibration pattern
- is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
- possible to use partially occluded patterns, or even different patterns in different views. Then,
- the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
- then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
- Z-coordinate of each input object point is 0.
- In the old interface all the vectors of object points from different views are concatenated
- together.
- @param imagePoints In the new interface it is a vector of vectors of the projections of calibration
- pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
- objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
- In the old interface all the vectors of object points from different views are concatenated
- together.
- @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
- @param cameraMatrix Output 3x3 floating-point camera matrix
- \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
- and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
- initialized before calling the function.
- @param distCoeffs Output vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
- 4, 5, 8, 12 or 14 elements.
- @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
- (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
- k-th translation vector (see the next output parameter description) brings the calibration pattern
- from the model coordinate space (in which object points are specified) to the world coordinate
- space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
- @param tvecs Output vector of translation vectors estimated for each pattern view.
- @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
- Order of deviations values:
- \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
- s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
- @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
- Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
- \f$R_i, T_i\f$ are concatenated 1x3 vectors.
- @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
- @param flags Different flags that may be zero or a combination of the following values:
- - **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
- fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
- center ( imageSize is used), and focal distances are computed in a least-squares fashion.
- Note, that if intrinsic parameters are known, there is no need to use this function just to
- estimate extrinsic parameters. Use solvePnP instead.
- - **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
- optimization. It stays at the center or at a different location specified when
- CALIB_USE_INTRINSIC_GUESS is set too.
- - **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
- ratio fx/fy stays the same as in the input cameraMatrix . When
- CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
- ignored, only their ratio is computed and used further.
- - **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
- to zeros and stay zero.
- - **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion
- coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is
- set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- - **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
- backward compatibility, this extra flag should be explicitly specified to make the
- calibration function use the rational model and return 8 coefficients. If the flag is not
- set, the function computes and returns only 5 distortion coefficients.
- - **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
- backward compatibility, this extra flag should be explicitly specified to make the
- calibration function use the thin prism model and return 12 coefficients. If the flag is not
- set, the function computes and returns only 5 distortion coefficients.
- - **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
- the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
- supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- - **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
- backward compatibility, this extra flag should be explicitly specified to make the
- calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
- set, the function computes and returns only 5 distortion coefficients.
- - **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
- the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
- supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- @param criteria Termination criteria for the iterative optimization algorithm.
- @return the overall RMS re-projection error.
- The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
- views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
- points and their corresponding 2D projections in each view must be specified. That may be achieved
- by using an object with a known geometry and easily detectable feature points. Such an object is
- called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
- a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
- (when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
- patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
- be used as long as initial cameraMatrix is provided.
- The algorithm performs the following steps:
- - Compute the initial intrinsic parameters (the option only available for planar calibration
- patterns) or read them from the input parameters. The distortion coefficients are all set to
- zeros initially unless some of CALIB_FIX_K? are specified.
- - Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
- done using solvePnP .
- - Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
- that is, the total sum of squared distances between the observed feature points imagePoints and
- the projected (using the current estimates for camera parameters and the poses) object points
- objectPoints. See projectPoints for details.
- @note
- If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
- calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
- (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
- then you have probably used patternSize=cvSize(rows,cols) instead of using
- patternSize=cvSize(cols,rows) in findChessboardCorners .
- @sa
- calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
- */
- CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
- InputArrayOfArrays imagePoints, Size imageSize,
- InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
- OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
- OutputArray stdDeviationsIntrinsics,
- OutputArray stdDeviationsExtrinsics,
- OutputArray perViewErrors,
- int flags = 0, TermCriteria criteria = TermCriteria(
- TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
- /** @overload */
- CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
- InputArrayOfArrays imagePoints, Size imageSize,
- InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
- OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
- int flags = 0, TermCriteria criteria = TermCriteria(
- TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
- /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
- This function is an extension of calibrateCamera() with the method of releasing object which was
- proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
- targets (calibration plates), this method can dramatically improve the precision of the estimated
- camera parameters. Both the object-releasing method and standard method are supported by this
- function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
- calibrateCamera() is a wrapper for this function.
- @param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
- coordinate space. See calibrateCamera() for details. If the method of releasing object to be used,
- the identical calibration board must be used in each view and it must be fully visible, and all
- objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
- target has to be rigid, or at least static if the camera (rather than the calibration target) is
- shifted for grabbing images.**
- @param imagePoints Vector of vectors of the projections of calibration pattern points. See
- calibrateCamera() for details.
- @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
- @param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
- a switch for calibration method selection. If object-releasing method to be used, pass in the
- parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
- make standard calibration method selected. Usually the top-right corner point of the calibration
- board grid is recommended to be fixed when object-releasing method being utilized. According to
- \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
- and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
- newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
- @param cameraMatrix Output 3x3 floating-point camera matrix. See calibrateCamera() for details.
- @param distCoeffs Output vector of distortion coefficients. See calibrateCamera() for details.
- @param rvecs Output vector of rotation vectors estimated for each pattern view. See calibrateCamera()
- for details.
- @param tvecs Output vector of translation vectors estimated for each pattern view.
- @param newObjPoints The updated output vector of calibration pattern points. The coordinates might
- be scaled based on three fixed points. The returned coordinates are accurate only if the above
- mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
- is ignored with standard calibration method.
- @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
- See calibrateCamera() for details.
- @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
- See calibrateCamera() for details.
- @param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
- of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
- parameter is ignored with standard calibration method.
- @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
- @param flags Different flags that may be zero or a combination of some predefined values. See
- calibrateCamera() for details. If the method of releasing object is used, the calibration time may
- be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
- less precise and less stable in some rare cases.
- @param criteria Termination criteria for the iterative optimization algorithm.
- @return the overall RMS re-projection error.
- The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
- views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
- calibrateCamera() for other detailed explanations.
- @sa
- calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
- */
- CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints,
- InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
- InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
- OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
- OutputArray newObjPoints,
- OutputArray stdDeviationsIntrinsics,
- OutputArray stdDeviationsExtrinsics,
- OutputArray stdDeviationsObjPoints,
- OutputArray perViewErrors,
- int flags = 0, TermCriteria criteria = TermCriteria(
- TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
- /** @overload */
- CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints,
- InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
- InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
- OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
- OutputArray newObjPoints,
- int flags = 0, TermCriteria criteria = TermCriteria(
- TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
- /** @brief Computes useful camera characteristics from the camera matrix.
- @param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
- stereoCalibrate .
- @param imageSize Input image size in pixels.
- @param apertureWidth Physical width in mm of the sensor.
- @param apertureHeight Physical height in mm of the sensor.
- @param fovx Output field of view in degrees along the horizontal sensor axis.
- @param fovy Output field of view in degrees along the vertical sensor axis.
- @param focalLength Focal length of the lens in mm.
- @param principalPoint Principal point in mm.
- @param aspectRatio \f$f_y/f_x\f$
- The function computes various useful camera characteristics from the previously estimated camera
- matrix.
- @note
- Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
- the chessboard pitch (it can thus be any value).
- */
- CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
- double apertureWidth, double apertureHeight,
- CV_OUT double& fovx, CV_OUT double& fovy,
- CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
- CV_OUT double& aspectRatio );
- /** @brief Calibrates the stereo camera.
- @param objectPoints Vector of vectors of the calibration pattern points.
- @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
- observed by the first camera.
- @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
- observed by the second camera.
- @param cameraMatrix1 Input/output first camera matrix:
- \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
- any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO ,
- CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
- matrix components must be initialized. See the flags description for details.
- @param distCoeffs1 Input/output vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
- 4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
- @param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
- @param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
- is similar to distCoeffs1 .
- @param imageSize Size of the image used only to initialize intrinsic camera matrix.
- @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
- @param T Output translation vector between the coordinate systems of the cameras.
- @param E Output essential matrix.
- @param F Output fundamental matrix.
- @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
- @param flags Different flags that may be zero or a combination of the following values:
- - **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
- matrices are estimated.
- - **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
- according to the specified flags. Initial values are provided by the user.
- - **CALIB_USE_EXTRINSIC_GUESS** R, T contain valid initial values that are optimized further.
- Otherwise R, T are initialized to the median value of the pattern views (each dimension separately).
- - **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
- - **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
- - **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
- .
- - **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
- - **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
- zeros and fix there.
- - **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial
- distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set,
- the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- - **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
- compatibility, this extra flag should be explicitly specified to make the calibration
- function use the rational model and return 8 coefficients. If the flag is not set, the
- function computes and returns only 5 distortion coefficients.
- - **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
- backward compatibility, this extra flag should be explicitly specified to make the
- calibration function use the thin prism model and return 12 coefficients. If the flag is not
- set, the function computes and returns only 5 distortion coefficients.
- - **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
- the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
- supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- - **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
- backward compatibility, this extra flag should be explicitly specified to make the
- calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
- set, the function computes and returns only 5 distortion coefficients.
- - **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
- the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
- supplied distCoeffs matrix is used. Otherwise, it is set to 0.
- @param criteria Termination criteria for the iterative optimization algorithm.
- The function estimates transformation between two cameras making a stereo pair. If you have a stereo
- camera where the relative position and orientation of two cameras is fixed, and if you computed
- poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
- respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
- This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
- need to know the position and orientation of the second camera relative to the first camera. This is
- what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:
- \f[R_2=R*R_1\f]
- \f[T_2=R*T_1 + T,\f]
- Optionally, it computes the essential matrix E:
- \f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]
- where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
- can also compute the fundamental matrix F:
- \f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]
- Besides the stereo-related information, the function can also perform a full calibration of each of
- two cameras. However, due to the high dimensionality of the parameter space and noise in the input
- data, the function can diverge from the correct solution. If the intrinsic parameters can be
- estimated with high accuracy for each of the cameras individually (for example, using
- calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the
- function along with the computed intrinsic parameters. Otherwise, if all the parameters are
- estimated at once, it makes sense to restrict some parameters, for example, pass
- CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a
- reasonable assumption.
- Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
- points in all the available views from both cameras. The function returns the final value of the
- re-projection error.
- */
- CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
- InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
- InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
- InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
- Size imageSize, InputOutputArray R,InputOutputArray T, OutputArray E, OutputArray F,
- OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
- TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
- /// @overload
- CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
- InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
- InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
- InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
- Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
- int flags = CALIB_FIX_INTRINSIC,
- TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
- /** @brief Computes rectification transforms for each head of a calibrated stereo camera.
- @param cameraMatrix1 First camera matrix.
- @param distCoeffs1 First camera distortion parameters.
- @param cameraMatrix2 Second camera matrix.
- @param distCoeffs2 Second camera distortion parameters.
- @param imageSize Size of the image used for stereo calibration.
- @param R Rotation matrix between the coordinate systems of the first and the second cameras.
- @param T Translation vector between coordinate systems of the cameras.
- @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
- @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
- @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
- camera.
- @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
- camera.
- @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
- @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
- the function makes the principal points of each camera have the same pixel coordinates in the
- rectified views. And if the flag is not set, the function may still shift the images in the
- horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
- useful image area.
- @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
- scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
- images are zoomed and shifted so that only valid pixels are visible (no black areas after
- rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
- pixels from the original images from the cameras are retained in the rectified images (no source
- image pixels are lost). Obviously, any intermediate value yields an intermediate result between
- those two extreme cases.
- @param newImageSize New image resolution after rectification. The same size should be passed to
- initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
- is passed (default), it is set to the original imageSize . Setting it to larger value can help you
- preserve details in the original image, especially when there is a big radial distortion.
- @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
- are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
- (see the picture below).
- @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
- are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
- (see the picture below).
- The function computes the rotation matrices for each camera that (virtually) make both camera image
- planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
- the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
- as input. As output, it provides two rotation matrices and also two projection matrices in the new
- coordinates. The function distinguishes the following two cases:
- - **Horizontal stereo**: the first and the second camera views are shifted relative to each other
- mainly along the x axis (with possible small vertical shift). In the rectified images, the
- corresponding epipolar lines in the left and right cameras are horizontal and have the same
- y-coordinate. P1 and P2 look like:
- \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
- \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
- where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
- CALIB_ZERO_DISPARITY is set.
- - **Vertical stereo**: the first and the second camera views are shifted relative to each other
- mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
- lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
- \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
- \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
- where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
- set.
- As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
- matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
- initialize the rectification map for each camera.
- See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
- the corresponding image regions. This means that the images are well rectified, which is what most
- stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
- their interiors are all valid pixels.
- ![image](pics/stereo_undistort.jpg)
- */
- CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
- InputArray cameraMatrix2, InputArray distCoeffs2,
- Size imageSize, InputArray R, InputArray T,
- OutputArray R1, OutputArray R2,
- OutputArray P1, OutputArray P2,
- OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
- double alpha = -1, Size newImageSize = Size(),
- CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
- /** @brief Computes a rectification transform for an uncalibrated stereo camera.
- @param points1 Array of feature points in the first image.
- @param points2 The corresponding points in the second image. The same formats as in
- findFundamentalMat are supported.
- @param F Input fundamental matrix. It can be computed from the same set of point pairs using
- findFundamentalMat .
- @param imgSize Size of the image.
- @param H1 Output rectification homography matrix for the first image.
- @param H2 Output rectification homography matrix for the second image.
- @param threshold Optional threshold used to filter out the outliers. If the parameter is greater
- than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
- for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
- rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
- The function computes the rectification transformations without knowing intrinsic parameters of the
- cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
- related difference from stereoRectify is that the function outputs not the rectification
- transformations in the object (3D) space, but the planar perspective transformations encoded by the
- homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
- @note
- While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
- depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
- it would be better to correct it before computing the fundamental matrix and calling this
- function. For example, distortion coefficients can be estimated for each head of stereo camera
- separately by using calibrateCamera . Then, the images can be corrected using undistort , or
- just the point coordinates can be corrected with undistortPoints .
- */
- CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
- InputArray F, Size imgSize,
- OutputArray H1, OutputArray H2,
- double threshold = 5 );
- //! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
- CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
- InputArray cameraMatrix2, InputArray distCoeffs2,
- InputArray cameraMatrix3, InputArray distCoeffs3,
- InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
- Size imageSize, InputArray R12, InputArray T12,
- InputArray R13, InputArray T13,
- OutputArray R1, OutputArray R2, OutputArray R3,
- OutputArray P1, OutputArray P2, OutputArray P3,
- OutputArray Q, double alpha, Size newImgSize,
- CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
- /** @brief Returns the new camera matrix based on the free scaling parameter.
- @param cameraMatrix Input camera matrix.
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
- 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
- assumed.
- @param imageSize Original image size.
- @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
- valid) and 1 (when all the source image pixels are retained in the undistorted image). See
- stereoRectify for details.
- @param newImgSize Image size after rectification. By default, it is set to imageSize .
- @param validPixROI Optional output rectangle that outlines all-good-pixels region in the
- undistorted image. See roi1, roi2 description in stereoRectify .
- @param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
- principal point should be at the image center or not. By default, the principal point is chosen to
- best fit a subset of the source image (determined by alpha) to the corrected image.
- @return new_camera_matrix Output new camera matrix.
- The function computes and returns the optimal new camera matrix based on the free scaling parameter.
- By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
- image pixels if there is valuable information in the corners alpha=1 , or get something in between.
- When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
- "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
- coefficients, the computed new camera matrix, and newImageSize should be passed to
- initUndistortRectifyMap to produce the maps for remap .
- */
- CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
- Size imageSize, double alpha, Size newImgSize = Size(),
- CV_OUT Rect* validPixROI = 0,
- bool centerPrincipalPoint = false);
- /** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
- @param[in] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point
- expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
- This is a vector (`vector<Mat>`) that contains the rotation matrices for all the transformations
- from gripper frame to robot base frame.
- @param[in] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point
- expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
- This is a vector (`vector<Mat>`) that contains the translation vectors for all the transformations
- from gripper frame to robot base frame.
- @param[in] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
- expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
- This is a vector (`vector<Mat>`) that contains the rotation matrices for all the transformations
- from calibration target frame to camera frame.
- @param[in] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
- expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
- This is a vector (`vector<Mat>`) that contains the translation vectors for all the transformations
- from calibration target frame to camera frame.
- @param[out] R_cam2gripper Estimated rotation part extracted from the homogeneous matrix that transforms a point
- expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
- @param[out] t_cam2gripper Estimated translation part extracted from the homogeneous matrix that transforms a point
- expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
- @param[in] method One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
- The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
- rotation then the translation (separable solutions) and the following methods are implemented:
- - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
- - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
- - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
- Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
- with the following implemented method:
- - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
- - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
- The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
- mounted on a robot gripper ("hand") has to be estimated.
- ![](pics/hand-eye_figure.png)
- The calibration procedure is the following:
- - a static calibration pattern is used to estimate the transformation between the target frame
- and the camera frame
- - the robot gripper is moved in order to acquire several poses
- - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
- instance the robot kinematics
- \f[
- \begin{bmatrix}
- X_b\\
- Y_b\\
- Z_b\\
- 1
- \end{bmatrix}
- =
- \begin{bmatrix}
- _{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
- 0_{1 \times 3} & 1
- \end{bmatrix}
- \begin{bmatrix}
- X_g\\
- Y_g\\
- Z_g\\
- 1
- \end{bmatrix}
- \f]
- - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
- for instance a pose estimation method (PnP) from 2D-3D point correspondences
- \f[
- \begin{bmatrix}
- X_c\\
- Y_c\\
- Z_c\\
- 1
- \end{bmatrix}
- =
- \begin{bmatrix}
- _{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
- 0_{1 \times 3} & 1
- \end{bmatrix}
- \begin{bmatrix}
- X_t\\
- Y_t\\
- Z_t\\
- 1
- \end{bmatrix}
- \f]
- The Hand-Eye calibration procedure returns the following homogeneous transformation
- \f[
- \begin{bmatrix}
- X_g\\
- Y_g\\
- Z_g\\
- 1
- \end{bmatrix}
- =
- \begin{bmatrix}
- _{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
- 0_{1 \times 3} & 1
- \end{bmatrix}
- \begin{bmatrix}
- X_c\\
- Y_c\\
- Z_c\\
- 1
- \end{bmatrix}
- \f]
- This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
- \f[
- \begin{align*}
- ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
- \hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
- (^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
- \hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
- \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
- \end{align*}
- \f]
- \note
- Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
- \note
- A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
- So at least 3 different poses are required, but it is strongly recommended to use many more poses.
- */
- CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base,
- InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam,
- OutputArray R_cam2gripper, OutputArray t_cam2gripper,
- HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI );
- /** @brief Converts points from Euclidean to homogeneous space.
- @param src Input vector of N-dimensional points.
- @param dst Output vector of N+1-dimensional points.
- The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
- point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
- */
- CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
- /** @brief Converts points from homogeneous to Euclidean space.
- @param src Input vector of N-dimensional points.
- @param dst Output vector of N-1-dimensional points.
- The function converts points homogeneous to Euclidean space using perspective projection. That is,
- each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
- output point coordinates will be (0,0,0,...).
- */
- CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
- /** @brief Converts points to/from homogeneous coordinates.
- @param src Input array or vector of 2D, 3D, or 4D points.
- @param dst Output vector of 2D, 3D, or 4D points.
- The function converts 2D or 3D points from/to homogeneous coordinates by calling either
- convertPointsToHomogeneous or convertPointsFromHomogeneous.
- @note The function is obsolete. Use one of the previous two functions instead.
- */
- CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
- /** @brief Calculates a fundamental matrix from the corresponding points in two images.
- @param points1 Array of N points from the first image. The point coordinates should be
- floating-point (single or double precision).
- @param points2 Array of the second image points of the same size and format as points1 .
- @param method Method for computing a fundamental matrix.
- - **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
- - **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
- - **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
- - **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
- @param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
- line in pixels, beyond which the point is considered an outlier and is not used for computing the
- final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
- point localization, image resolution, and the image noise.
- @param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
- of confidence (probability) that the estimated matrix is correct.
- @param mask
- The epipolar geometry is described by the following equation:
- \f[[p_2; 1]^T F [p_1; 1] = 0\f]
- where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
- second images, respectively.
- The function calculates the fundamental matrix using one of four methods listed above and returns
- the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
- algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
- matrices sequentially).
- The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
- epipolar lines corresponding to the specified points. It can also be passed to
- stereoRectifyUncalibrated to compute the rectification transformation. :
- @code
- // Example. Estimation of fundamental matrix using the RANSAC algorithm
- int point_count = 100;
- vector<Point2f> points1(point_count);
- vector<Point2f> points2(point_count);
- // initialize the points here ...
- for( int i = 0; i < point_count; i++ )
- {
- points1[i] = ...;
- points2[i] = ...;
- }
- Mat fundamental_matrix =
- findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
- @endcode
- */
- CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
- int method = FM_RANSAC,
- double ransacReprojThreshold = 3., double confidence = 0.99,
- OutputArray mask = noArray() );
- /** @overload */
- CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
- OutputArray mask, int method = FM_RANSAC,
- double ransacReprojThreshold = 3., double confidence = 0.99 );
- /** @brief Calculates an essential matrix from the corresponding points in two images.
- @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
- be floating-point (single or double precision).
- @param points2 Array of the second image points of the same size and format as points1 .
- @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
- Note that this function assumes that points1 and points2 are feature points from cameras with the
- same camera matrix.
- @param method Method for computing an essential matrix.
- - **RANSAC** for the RANSAC algorithm.
- - **LMEDS** for the LMedS algorithm.
- @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
- confidence (probability) that the estimated matrix is correct.
- @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
- line in pixels, beyond which the point is considered an outlier and is not used for computing the
- final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
- point localization, image resolution, and the image noise.
- @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
- for the other points. The array is computed only in the RANSAC and LMedS methods.
- This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
- @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
- \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
- where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
- second images, respectively. The result of this function may be passed further to
- decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
- */
- CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
- InputArray cameraMatrix, int method = RANSAC,
- double prob = 0.999, double threshold = 1.0,
- OutputArray mask = noArray() );
- /** @overload
- @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
- be floating-point (single or double precision).
- @param points2 Array of the second image points of the same size and format as points1 .
- @param focal focal length of the camera. Note that this function assumes that points1 and points2
- are feature points from cameras with same focal length and principal point.
- @param pp principal point of the camera.
- @param method Method for computing a fundamental matrix.
- - **RANSAC** for the RANSAC algorithm.
- - **LMEDS** for the LMedS algorithm.
- @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
- line in pixels, beyond which the point is considered an outlier and is not used for computing the
- final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
- point localization, image resolution, and the image noise.
- @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
- confidence (probability) that the estimated matrix is correct.
- @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
- for the other points. The array is computed only in the RANSAC and LMedS methods.
- This function differs from the one above that it computes camera matrix from focal length and
- principal point:
- \f[K =
- \begin{bmatrix}
- f & 0 & x_{pp} \\
- 0 & f & y_{pp} \\
- 0 & 0 & 1
- \end{bmatrix}\f]
- */
- CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
- double focal = 1.0, Point2d pp = Point2d(0, 0),
- int method = RANSAC, double prob = 0.999,
- double threshold = 1.0, OutputArray mask = noArray() );
- /** @brief Decompose an essential matrix to possible rotations and translation.
- @param E The input essential matrix.
- @param R1 One possible rotation matrix.
- @param R2 Another possible rotation matrix.
- @param t One possible translation.
- This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
- possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
- decomposing E, you can only get the direction of the translation, so the function returns unit t.
- */
- CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
- /** @brief Recover relative camera rotation and translation from an estimated essential matrix and the
- corresponding points in two images, using cheirality check. Returns the number of inliers which pass
- the check.
- @param E The input essential matrix.
- @param points1 Array of N 2D points from the first image. The point coordinates should be
- floating-point (single or double precision).
- @param points2 Array of the second image points of the same size and format as points1 .
- @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
- Note that this function assumes that points1 and points2 are feature points from cameras with the
- same camera matrix.
- @param R Recovered relative rotation.
- @param t Recovered relative translation.
- @param mask Input/output mask for inliers in points1 and points2.
- : If it is not empty, then it marks inliers in points1 and points2 for then given essential
- matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
- which pass the cheirality check.
- This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
- pose hypotheses by doing cheirality check. The cheirality check basically means that the
- triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .
- This function can be used to process output E and mask from findEssentialMat. In this scenario,
- points1 and points2 are the same input for findEssentialMat. :
- @code
- // Example. Estimation of fundamental matrix using the RANSAC algorithm
- int point_count = 100;
- vector<Point2f> points1(point_count);
- vector<Point2f> points2(point_count);
- // initialize the points here ...
- for( int i = 0; i < point_count; i++ )
- {
- points1[i] = ...;
- points2[i] = ...;
- }
- // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
- Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
- Mat E, R, t, mask;
- E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
- recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
- @endcode
- */
- CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
- InputArray cameraMatrix, OutputArray R, OutputArray t,
- InputOutputArray mask = noArray() );
- /** @overload
- @param E The input essential matrix.
- @param points1 Array of N 2D points from the first image. The point coordinates should be
- floating-point (single or double precision).
- @param points2 Array of the second image points of the same size and format as points1 .
- @param R Recovered relative rotation.
- @param t Recovered relative translation.
- @param focal Focal length of the camera. Note that this function assumes that points1 and points2
- are feature points from cameras with same focal length and principal point.
- @param pp principal point of the camera.
- @param mask Input/output mask for inliers in points1 and points2.
- : If it is not empty, then it marks inliers in points1 and points2 for then given essential
- matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
- which pass the cheirality check.
- This function differs from the one above that it computes camera matrix from focal length and
- principal point:
- \f[K =
- \begin{bmatrix}
- f & 0 & x_{pp} \\
- 0 & f & y_{pp} \\
- 0 & 0 & 1
- \end{bmatrix}\f]
- */
- CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
- OutputArray R, OutputArray t,
- double focal = 1.0, Point2d pp = Point2d(0, 0),
- InputOutputArray mask = noArray() );
- /** @overload
- @param E The input essential matrix.
- @param points1 Array of N 2D points from the first image. The point coordinates should be
- floating-point (single or double precision).
- @param points2 Array of the second image points of the same size and format as points1.
- @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
- Note that this function assumes that points1 and points2 are feature points from cameras with the
- same camera matrix.
- @param R Recovered relative rotation.
- @param t Recovered relative translation.
- @param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points).
- @param mask Input/output mask for inliers in points1 and points2.
- : If it is not empty, then it marks inliers in points1 and points2 for then given essential
- matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
- which pass the cheirality check.
- @param triangulatedPoints 3d points which were reconstructed by triangulation.
- */
- CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
- InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
- OutputArray triangulatedPoints = noArray());
- /** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
- @param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
- vector\<Point2f\> .
- @param whichImage Index of the image (1 or 2) that contains the points .
- @param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
- @param lines Output vector of the epipolar lines corresponding to the points in the other image.
- Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
- For every point in one of the two images of a stereo pair, the function finds the equation of the
- corresponding epipolar line in the other image.
- From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
- image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
- \f[l^{(2)}_i = F p^{(1)}_i\f]
- And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
- \f[l^{(1)}_i = F^T p^{(2)}_i\f]
- Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
- */
- CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
- InputArray F, OutputArray lines );
- /** @brief Reconstructs points by triangulation.
- @param projMatr1 3x4 projection matrix of the first camera.
- @param projMatr2 3x4 projection matrix of the second camera.
- @param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
- be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
- @param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
- it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
- @param points4D 4xN array of reconstructed points in homogeneous coordinates.
- The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
- observations with a stereo camera. Projections matrices can be obtained from stereoRectify.
- @note
- Keep in mind that all input data should be of float type in order for this function to work.
- @sa
- reprojectImageTo3D
- */
- CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
- InputArray projPoints1, InputArray projPoints2,
- OutputArray points4D );
- /** @brief Refines coordinates of corresponding points.
- @param F 3x3 fundamental matrix.
- @param points1 1xN array containing the first set of points.
- @param points2 1xN array containing the second set of points.
- @param newPoints1 The optimized points1.
- @param newPoints2 The optimized points2.
- The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
- For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
- computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
- error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
- geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
- \f$newPoints2^T * F * newPoints1 = 0\f$ .
- */
- CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
- OutputArray newPoints1, OutputArray newPoints2 );
- /** @brief Filters off small noise blobs (speckles) in the disparity map
- @param img The input 16-bit signed disparity image
- @param newVal The disparity value used to paint-off the speckles
- @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
- affected by the algorithm
- @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
- blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
- disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
- account when specifying this parameter value.
- @param buf The optional temporary buffer to avoid memory allocation within the function.
- */
- CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
- int maxSpeckleSize, double maxDiff,
- InputOutputArray buf = noArray() );
- //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
- CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
- int minDisparity, int numberOfDisparities,
- int SADWindowSize );
- //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
- CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
- int minDisparity, int numberOfDisparities,
- int disp12MaxDisp = 1 );
- /** @brief Reprojects a disparity image to 3D space.
- @param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
- floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
- fractional bits.
- @param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
- element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
- map.
- @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
- @param handleMissingValues Indicates, whether the function should handle missing values (i.e.
- points where the disparity was not computed). If handleMissingValues=true, then pixels with the
- minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
- to 3D points with a very large Z value (currently set to 10000).
- @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
- depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
- The function transforms a single-channel disparity map to a 3-channel image representing a 3D
- surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
- computes:
- \f[\begin{array}{l} [X \; Y \; Z \; W]^T = \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]
- The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
- stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
- perspectiveTransform .
- */
- CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
- OutputArray _3dImage, InputArray Q,
- bool handleMissingValues = false,
- int ddepth = -1 );
- /** @brief Calculates the Sampson Distance between two points.
- The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
- \f[
- sd( \texttt{pt1} , \texttt{pt2} )=
- \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
- {((\texttt{F} \cdot \texttt{pt1})(0))^2 +
- ((\texttt{F} \cdot \texttt{pt1})(1))^2 +
- ((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
- ((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
- \f]
- The fundamental matrix may be calculated using the cv::findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
- @param pt1 first homogeneous 2d point
- @param pt2 second homogeneous 2d point
- @param F fundamental matrix
- @return The computed Sampson distance.
- */
- CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
- /** @brief Computes an optimal affine transformation between two 3D point sets.
- It computes
- \f[
- \begin{bmatrix}
- x\\
- y\\
- z\\
- \end{bmatrix}
- =
- \begin{bmatrix}
- a_{11} & a_{12} & a_{13}\\
- a_{21} & a_{22} & a_{23}\\
- a_{31} & a_{32} & a_{33}\\
- \end{bmatrix}
- \begin{bmatrix}
- X\\
- Y\\
- Z\\
- \end{bmatrix}
- +
- \begin{bmatrix}
- b_1\\
- b_2\\
- b_3\\
- \end{bmatrix}
- \f]
- @param src First input 3D point set containing \f$(X,Y,Z)\f$.
- @param dst Second input 3D point set containing \f$(x,y,z)\f$.
- @param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
- \f[
- \begin{bmatrix}
- a_{11} & a_{12} & a_{13} & b_1\\
- a_{21} & a_{22} & a_{23} & b_2\\
- a_{31} & a_{32} & a_{33} & b_3\\
- \end{bmatrix}
- \f]
- @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
- @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
- an inlier.
- @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
- between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
- significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
- The function estimates an optimal 3D affine transformation between two 3D point sets using the
- RANSAC algorithm.
- */
- CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
- OutputArray out, OutputArray inliers,
- double ransacThreshold = 3, double confidence = 0.99);
- /** @brief Computes an optimal affine transformation between two 2D point sets.
- It computes
- \f[
- \begin{bmatrix}
- x\\
- y\\
- \end{bmatrix}
- =
- \begin{bmatrix}
- a_{11} & a_{12}\\
- a_{21} & a_{22}\\
- \end{bmatrix}
- \begin{bmatrix}
- X\\
- Y\\
- \end{bmatrix}
- +
- \begin{bmatrix}
- b_1\\
- b_2\\
- \end{bmatrix}
- \f]
- @param from First input 2D point set containing \f$(X,Y)\f$.
- @param to Second input 2D point set containing \f$(x,y)\f$.
- @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
- @param method Robust method used to compute transformation. The following methods are possible:
- - cv::RANSAC - RANSAC-based robust method
- - cv::LMEDS - Least-Median robust method
- RANSAC is the default method.
- @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
- a point as an inlier. Applies only to RANSAC.
- @param maxIters The maximum number of robust method iterations.
- @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
- between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
- significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
- @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
- Passing 0 will disable refining, so the output matrix will be output of robust method.
- @return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
- could not be estimated. The returned matrix has the following form:
- \f[
- \begin{bmatrix}
- a_{11} & a_{12} & b_1\\
- a_{21} & a_{22} & b_2\\
- \end{bmatrix}
- \f]
- The function estimates an optimal 2D affine transformation between two 2D point sets using the
- selected robust algorithm.
- The computed transformation is then refined further (using only inliers) with the
- Levenberg-Marquardt method to reduce the re-projection error even more.
- @note
- The RANSAC method can handle practically any ratio of outliers but needs a threshold to
- distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
- correctly only when there are more than 50% of inliers.
- @sa estimateAffinePartial2D, getAffineTransform
- */
- CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
- int method = RANSAC, double ransacReprojThreshold = 3,
- size_t maxIters = 2000, double confidence = 0.99,
- size_t refineIters = 10);
- /** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
- two 2D point sets.
- @param from First input 2D point set.
- @param to Second input 2D point set.
- @param inliers Output vector indicating which points are inliers.
- @param method Robust method used to compute transformation. The following methods are possible:
- - cv::RANSAC - RANSAC-based robust method
- - cv::LMEDS - Least-Median robust method
- RANSAC is the default method.
- @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
- a point as an inlier. Applies only to RANSAC.
- @param maxIters The maximum number of robust method iterations.
- @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
- between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
- significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
- @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
- Passing 0 will disable refining, so the output matrix will be output of robust method.
- @return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
- empty matrix if transformation could not be estimated.
- The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
- combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
- estimation.
- The computed transformation is then refined further (using only inliers) with the
- Levenberg-Marquardt method to reduce the re-projection error even more.
- Estimated transformation matrix is:
- \f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
- \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
- \end{bmatrix} \f]
- Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
- translations in \f$ x, y \f$ axes respectively.
- @note
- The RANSAC method can handle practically any ratio of outliers but need a threshold to
- distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
- correctly only when there are more than 50% of inliers.
- @sa estimateAffine2D, getAffineTransform
- */
- CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
- int method = RANSAC, double ransacReprojThreshold = 3,
- size_t maxIters = 2000, double confidence = 0.99,
- size_t refineIters = 10);
- /** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
- An example program with homography decomposition.
- Check @ref tutorial_homography "the corresponding tutorial" for more details.
- */
- /** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
- @param H The input homography matrix between two images.
- @param K The input intrinsic camera calibration matrix.
- @param rotations Array of rotation matrices.
- @param translations Array of translation matrices.
- @param normals Array of plane normal matrices.
- This function extracts relative camera motion between two views observing a planar object from the
- homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
- may return up to four mathematical solution sets. At least two of the solutions may further be
- invalidated if point correspondences are available by applying positive depth constraint (all points
- must be in front of the camera). The decomposition method is described in detail in @cite Malis .
- */
- CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
- InputArray K,
- OutputArrayOfArrays rotations,
- OutputArrayOfArrays translations,
- OutputArrayOfArrays normals);
- /** @brief Filters homography decompositions based on additional information.
- @param rotations Vector of rotation matrices.
- @param normals Vector of plane normal matrices.
- @param beforePoints Vector of (rectified) visible reference points before the homography is applied
- @param afterPoints Vector of (rectified) visible reference points after the homography is applied
- @param possibleSolutions Vector of int indices representing the viable solution set after filtering
- @param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the findHomography function
- This function is intended to filter the output of the decomposeHomographyMat based on additional
- information as described in @cite Malis . The summary of the method: the decomposeHomographyMat function
- returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
- sets of points visible in the camera frame before and after the homography transformation is applied,
- we can determine which are the true potential solutions and which are the opposites by verifying which
- homographies are consistent with all visible reference points being in front of the camera. The inputs
- are left unchanged; the filtered solution set is returned as indices into the existing one.
- */
- CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
- InputArrayOfArrays normals,
- InputArray beforePoints,
- InputArray afterPoints,
- OutputArray possibleSolutions,
- InputArray pointsMask = noArray());
- /** @brief The base class for stereo correspondence algorithms.
- */
- class CV_EXPORTS_W StereoMatcher : public Algorithm
- {
- public:
- enum { DISP_SHIFT = 4,
- DISP_SCALE = (1 << DISP_SHIFT)
- };
- /** @brief Computes disparity map for the specified stereo pair
- @param left Left 8-bit single-channel image.
- @param right Right image of the same size and the same type as the left one.
- @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
- like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
- has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
- */
- CV_WRAP virtual void compute( InputArray left, InputArray right,
- OutputArray disparity ) = 0;
- CV_WRAP virtual int getMinDisparity() const = 0;
- CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
- CV_WRAP virtual int getNumDisparities() const = 0;
- CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
- CV_WRAP virtual int getBlockSize() const = 0;
- CV_WRAP virtual void setBlockSize(int blockSize) = 0;
- CV_WRAP virtual int getSpeckleWindowSize() const = 0;
- CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
- CV_WRAP virtual int getSpeckleRange() const = 0;
- CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
- CV_WRAP virtual int getDisp12MaxDiff() const = 0;
- CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
- };
- /** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
- contributed to OpenCV by K. Konolige.
- */
- class CV_EXPORTS_W StereoBM : public StereoMatcher
- {
- public:
- enum { PREFILTER_NORMALIZED_RESPONSE = 0,
- PREFILTER_XSOBEL = 1
- };
- CV_WRAP virtual int getPreFilterType() const = 0;
- CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
- CV_WRAP virtual int getPreFilterSize() const = 0;
- CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
- CV_WRAP virtual int getPreFilterCap() const = 0;
- CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
- CV_WRAP virtual int getTextureThreshold() const = 0;
- CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
- CV_WRAP virtual int getUniquenessRatio() const = 0;
- CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
- CV_WRAP virtual int getSmallerBlockSize() const = 0;
- CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
- CV_WRAP virtual Rect getROI1() const = 0;
- CV_WRAP virtual void setROI1(Rect roi1) = 0;
- CV_WRAP virtual Rect getROI2() const = 0;
- CV_WRAP virtual void setROI2(Rect roi2) = 0;
- /** @brief Creates StereoBM object
- @param numDisparities the disparity search range. For each pixel algorithm will find the best
- disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
- shifted by changing the minimum disparity.
- @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
- (as the block is centered at the current pixel). Larger block size implies smoother, though less
- accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
- chance for algorithm to find a wrong correspondence.
- The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
- a specific stereo pair.
- */
- CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
- };
- /** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
- one as follows:
- - By default, the algorithm is single-pass, which means that you consider only 5 directions
- instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
- algorithm but beware that it may consume a lot of memory.
- - The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
- blocks to single pixels.
- - Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
- sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
- - Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
- example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
- check, quadratic interpolation and speckle filtering).
- @note
- - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
- at opencv_source_code/samples/python/stereo_match.py
- */
- class CV_EXPORTS_W StereoSGBM : public StereoMatcher
- {
- public:
- enum
- {
- MODE_SGBM = 0,
- MODE_HH = 1,
- MODE_SGBM_3WAY = 2,
- MODE_HH4 = 3
- };
- CV_WRAP virtual int getPreFilterCap() const = 0;
- CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
- CV_WRAP virtual int getUniquenessRatio() const = 0;
- CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
- CV_WRAP virtual int getP1() const = 0;
- CV_WRAP virtual void setP1(int P1) = 0;
- CV_WRAP virtual int getP2() const = 0;
- CV_WRAP virtual void setP2(int P2) = 0;
- CV_WRAP virtual int getMode() const = 0;
- CV_WRAP virtual void setMode(int mode) = 0;
- /** @brief Creates StereoSGBM object
- @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
- rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
- @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
- zero. In the current implementation, this parameter must be divisible by 16.
- @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
- somewhere in the 3..11 range.
- @param P1 The first parameter controlling the disparity smoothness. See below.
- @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
- the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
- between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
- pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
- P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
- 32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
- @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
- disparity check. Set it to a non-positive value to disable the check.
- @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
- computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
- The result values are passed to the Birchfield-Tomasi pixel cost function.
- @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
- value should "win" the second best value to consider the found match correct. Normally, a value
- within the 5-15 range is good enough.
- @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
- and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
- 50-200 range.
- @param speckleRange Maximum disparity variation within each connected component. If you do speckle
- filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
- Normally, 1 or 2 is good enough.
- @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
- algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
- huge for HD-size pictures. By default, it is set to false .
- The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
- set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
- to a custom value.
- */
- CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
- int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
- int preFilterCap = 0, int uniquenessRatio = 0,
- int speckleWindowSize = 0, int speckleRange = 0,
- int mode = StereoSGBM::MODE_SGBM);
- };
- //! cv::undistort mode
- enum UndistortTypes
- {
- PROJ_SPHERICAL_ORTHO = 0,
- PROJ_SPHERICAL_EQRECT = 1
- };
- /** @brief Transforms an image to compensate for lens distortion.
- The function transforms an image to compensate radial and tangential lens distortion.
- The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
- (with bilinear interpolation). See the former function for details of the transformation being
- performed.
- Those pixels in the destination image, for which there is no correspondent pixels in the source
- image, are filled with zeros (black color).
- A particular subset of the source image that will be visible in the corrected image can be regulated
- by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
- newCameraMatrix depending on your requirements.
- The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
- the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
- f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
- the same.
- @param src Input (distorted) image.
- @param dst Output (corrected) image that has the same size and type as src .
- @param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
- of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
- @param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
- cameraMatrix but you may additionally scale and shift the result by using a different matrix.
- */
- CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
- InputArray cameraMatrix,
- InputArray distCoeffs,
- InputArray newCameraMatrix = noArray() );
- /** @brief Computes the undistortion and rectification transformation map.
- The function computes the joint undistortion and rectification transformation and represents the
- result in the form of maps for remap. The undistorted image looks like original, as if it is
- captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
- monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
- #getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
- newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
- Also, this new camera is oriented differently in the coordinate space, according to R. That, for
- example, helps to align two heads of a stereo camera so that the epipolar lines on both images
- become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
- The function actually builds the maps for the inverse mapping algorithm that is used by remap. That
- is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
- computes the corresponding coordinates in the source image (that is, in the original image from
- camera). The following process is applied:
- \f[
- \begin{array}{l}
- x \leftarrow (u - {c'}_x)/{f'}_x \\
- y \leftarrow (v - {c'}_y)/{f'}_y \\
- {[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\
- x' \leftarrow X/W \\
- y' \leftarrow Y/W \\
- r^2 \leftarrow x'^2 + y'^2 \\
- x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
- + 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\
- y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
- + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
- s\vecthree{x'''}{y'''}{1} =
- \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
- {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
- {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
- map_x(u,v) \leftarrow x''' f_x + c_x \\
- map_y(u,v) \leftarrow y''' f_y + c_y
- \end{array}
- \f]
- where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
- are the distortion coefficients.
- In case of a stereo camera, this function is called twice: once for each camera head, after
- stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
- was not calibrated, it is still possible to compute the rectification transformations directly from
- the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
- homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
- space. R can be computed from H as
- \f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
- where cameraMatrix can be chosen arbitrarily.
- @param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
- of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
- @param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
- computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
- is assumed. In cvInitUndistortMap R assumed to be an identity matrix.
- @param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
- @param size Undistorted image size.
- @param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
- @param map1 The first output map.
- @param map2 The second output map.
- */
- CV_EXPORTS_W
- void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
- InputArray R, InputArray newCameraMatrix,
- Size size, int m1type, OutputArray map1, OutputArray map2);
- //! initializes maps for #remap for wide-angle
- CV_EXPORTS
- float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
- Size imageSize, int destImageWidth,
- int m1type, OutputArray map1, OutputArray map2,
- enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
- static inline
- float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
- Size imageSize, int destImageWidth,
- int m1type, OutputArray map1, OutputArray map2,
- int projType, double alpha = 0)
- {
- return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth,
- m1type, map1, map2, (UndistortTypes)projType, alpha);
- }
- /** @brief Returns the default new camera matrix.
- The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
- centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
- In the latter case, the new camera matrix will be:
- \f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f]
- where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
- By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
- move the principal point. However, when you work with stereo, it is important to move the principal
- points in both views to the same y-coordinate (which is required by most of stereo correspondence
- algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
- each view where the principal points are located at the center.
- @param cameraMatrix Input camera matrix.
- @param imgsize Camera view image size in pixels.
- @param centerPrincipalPoint Location of the principal point in the new camera matrix. The
- parameter indicates whether this location should be at the image center or not.
- */
- CV_EXPORTS_W
- Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(),
- bool centerPrincipalPoint = false);
- /** @brief Computes the ideal point coordinates from the observed point coordinates.
- The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
- sparse set of points instead of a raster image. Also the function performs a reverse transformation
- to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
- planar object, it does, up to a translation vector, if the proper R is specified.
- For each observed point coordinate \f$(u, v)\f$ the function computes:
- \f[
- \begin{array}{l}
- x^{"} \leftarrow (u - c_x)/f_x \\
- y^{"} \leftarrow (v - c_y)/f_y \\
- (x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
- {[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
- x \leftarrow X/W \\
- y \leftarrow Y/W \\
- \text{only performed if P is specified:} \\
- u' \leftarrow x {f'}_x + {c'}_x \\
- v' \leftarrow y {f'}_y + {c'}_y
- \end{array}
- \f]
- where *undistort* is an approximate iterative algorithm that estimates the normalized original
- point coordinates out of the normalized distorted point coordinates ("normalized" means that the
- coordinates do not depend on the camera matrix).
- The function can be used for both a stereo camera head or a monocular camera (when R is empty).
- @param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2).
- @param dst Output ideal point coordinates after undistortion and reverse perspective
- transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
- @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
- @param distCoeffs Input vector of distortion coefficients
- \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
- of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
- @param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
- #stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
- @param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
- #stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
- */
- CV_EXPORTS_W
- void undistortPoints(InputArray src, OutputArray dst,
- InputArray cameraMatrix, InputArray distCoeffs,
- InputArray R = noArray(), InputArray P = noArray());
- /** @overload
- @note Default version of #undistortPoints does 5 iterations to compute undistorted points.
- */
- CV_EXPORTS_AS(undistortPointsIter)
- void undistortPoints(InputArray src, OutputArray dst,
- InputArray cameraMatrix, InputArray distCoeffs,
- InputArray R, InputArray P, TermCriteria criteria);
- //! @} calib3d
- /** @brief The methods in this namespace use a so-called fisheye camera model.
- @ingroup calib3d_fisheye
- */
- namespace fisheye
- {
- //! @addtogroup calib3d_fisheye
- //! @{
- enum{
- CALIB_USE_INTRINSIC_GUESS = 1 << 0,
- CALIB_RECOMPUTE_EXTRINSIC = 1 << 1,
- CALIB_CHECK_COND = 1 << 2,
- CALIB_FIX_SKEW = 1 << 3,
- CALIB_FIX_K1 = 1 << 4,
- CALIB_FIX_K2 = 1 << 5,
- CALIB_FIX_K3 = 1 << 6,
- CALIB_FIX_K4 = 1 << 7,
- CALIB_FIX_INTRINSIC = 1 << 8,
- CALIB_FIX_PRINCIPAL_POINT = 1 << 9
- };
- /** @brief Projects points using fisheye model
- @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
- the number of points in the view.
- @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
- vector\<Point2f\>.
- @param affine
- @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
- @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
- @param alpha The skew coefficient.
- @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
- to components of the focal lengths, coordinates of the principal point, distortion coefficients,
- rotation vector, translation vector, and the skew. In the old interface different components of
- the jacobian are returned via different output parameters.
- The function computes projections of 3D points to the image plane given intrinsic and extrinsic
- camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
- image points coordinates (as functions of all the input parameters) with respect to the particular
- parameters, intrinsic and/or extrinsic.
- */
- CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
- InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
- /** @overload */
- CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
- InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
- /** @brief Distorts 2D points using fisheye model.
- @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
- the number of points in the view.
- @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
- @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
- @param alpha The skew coefficient.
- @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
- Note that the function assumes the camera matrix of the undistorted points to be identity.
- This means if you want to transform back points undistorted with undistortPoints() you have to
- multiply them with \f$P^{-1}\f$.
- */
- CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
- /** @brief Undistorts 2D points using fisheye model
- @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
- number of points in the view.
- @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
- @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
- @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
- 1-channel or 1x1 3-channel
- @param P New camera matrix (3x3) or new projection matrix (3x4)
- @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
- */
- CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
- InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray());
- /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
- distortion is used, if R or P is empty identity matrixes are used.
- @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
- @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
- @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
- 1-channel or 1x1 3-channel
- @param P New camera matrix (3x3) or new projection matrix (3x4)
- @param size Undistorted image size.
- @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
- for details.
- @param map1 The first output map.
- @param map2 The second output map.
- */
- CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
- const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
- /** @brief Transforms an image to compensate for fisheye lens distortion.
- @param distorted image with fisheye lens distortion.
- @param undistorted Output image with compensated fisheye lens distortion.
- @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
- @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
- @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you
- may additionally scale and shift the result by using a different matrix.
- @param new_size
- The function transforms an image to compensate radial and tangential lens distortion.
- The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
- (with bilinear interpolation). See the former function for details of the transformation being
- performed.
- See below the results of undistortImage.
- - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
- k_4, k_5, k_6) of distortion were optimized under calibration)
- - b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
- k_3, k_4) of fisheye distortion were optimized under calibration)
- - c\) original image was captured with fisheye lens
- Pictures a) and b) almost the same. But if we consider points of image located far from the center
- of image, we can notice that on image a) these points are distorted.
- ![image](pics/fisheye_undistorted.jpg)
- */
- CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
- InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
- /** @brief Estimates new camera matrix for undistortion or rectification.
- @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
- @param image_size
- @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
- @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
- 1-channel or 1x1 3-channel
- @param P New camera matrix (3x3) or new projection matrix (3x4)
- @param balance Sets the new focal length in range between the min focal length and the max focal
- length. Balance is in range of [0, 1].
- @param new_size
- @param fov_scale Divisor for new focal length.
- */
- CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
- OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
- /** @brief Performs camera calibaration
- @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
- coordinate space.
- @param imagePoints vector of vectors of the projections of calibration pattern points.
- imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
- objectPoints[i].size() for each i.
- @param image_size Size of the image used only to initialize the intrinsic camera matrix.
- @param K Output 3x3 floating-point camera matrix
- \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
- fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
- initialized before calling the function.
- @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
- @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
- That is, each k-th rotation vector together with the corresponding k-th translation vector (see
- the next output parameter description) brings the calibration pattern from the model coordinate
- space (in which object points are specified) to the world coordinate space, that is, a real
- position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
- @param tvecs Output vector of translation vectors estimated for each pattern view.
- @param flags Different flags that may be zero or a combination of the following values:
- - **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
- fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
- center ( imageSize is used), and focal distances are computed in a least-squares fashion.
- - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
- of intrinsic optimization.
- - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
- - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
- - **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients
- are set to zeros and stay zero.
- - **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
- optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too.
- @param criteria Termination criteria for the iterative optimization algorithm.
- */
- CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
- InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
- TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
- /** @brief Stereo rectification for fisheye camera model
- @param K1 First camera matrix.
- @param D1 First camera distortion parameters.
- @param K2 Second camera matrix.
- @param D2 Second camera distortion parameters.
- @param imageSize Size of the image used for stereo calibration.
- @param R Rotation matrix between the coordinate systems of the first and the second
- cameras.
- @param tvec Translation vector between coordinate systems of the cameras.
- @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
- @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
- @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
- camera.
- @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
- camera.
- @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
- @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
- the function makes the principal points of each camera have the same pixel coordinates in the
- rectified views. And if the flag is not set, the function may still shift the images in the
- horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
- useful image area.
- @param newImageSize New image resolution after rectification. The same size should be passed to
- initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
- is passed (default), it is set to the original imageSize . Setting it to larger value can help you
- preserve details in the original image, especially when there is a big radial distortion.
- @param balance Sets the new focal length in range between the min focal length and the max focal
- length. Balance is in range of [0, 1].
- @param fov_scale Divisor for new focal length.
- */
- CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
- OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
- double balance = 0.0, double fov_scale = 1.0);
- /** @brief Performs stereo calibration
- @param objectPoints Vector of vectors of the calibration pattern points.
- @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
- observed by the first camera.
- @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
- observed by the second camera.
- @param K1 Input/output first camera matrix:
- \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
- any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CALIB_FIX_INTRINSIC are specified,
- some or all of the matrix components must be initialized.
- @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
- @param K2 Input/output second camera matrix. The parameter is similar to K1 .
- @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
- similar to D1 .
- @param imageSize Size of the image used only to initialize intrinsic camera matrix.
- @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
- @param T Output translation vector between the coordinate systems of the cameras.
- @param flags Different flags that may be zero or a combination of the following values:
- - **fisheye::CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
- are estimated.
- - **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
- fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
- center (imageSize is used), and focal distances are computed in a least-squares fashion.
- - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
- of intrinsic optimization.
- - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
- - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
- - **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
- zero.
- @param criteria Termination criteria for the iterative optimization algorithm.
- */
- CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
- InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
- OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
- TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
- //! @} calib3d_fisheye
- } // end namespace fisheye
- } //end namespace cv
- #if 0 //def __cplusplus
- //////////////////////////////////////////////////////////////////////////////////////////
- class CV_EXPORTS CvLevMarq
- {
- public:
- CvLevMarq();
- CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
- cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
- bool completeSymmFlag=false );
- ~CvLevMarq();
- void init( int nparams, int nerrs, CvTermCriteria criteria=
- cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
- bool completeSymmFlag=false );
- bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
- bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
- void clear();
- void step();
- enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
- cv::Ptr<CvMat> mask;
- cv::Ptr<CvMat> prevParam;
- cv::Ptr<CvMat> param;
- cv::Ptr<CvMat> J;
- cv::Ptr<CvMat> err;
- cv::Ptr<CvMat> JtJ;
- cv::Ptr<CvMat> JtJN;
- cv::Ptr<CvMat> JtErr;
- cv::Ptr<CvMat> JtJV;
- cv::Ptr<CvMat> JtJW;
- double prevErrNorm, errNorm;
- int lambdaLg10;
- CvTermCriteria criteria;
- int state;
- int iters;
- bool completeSymmFlag;
- int solveMethod;
- };
- #endif
- #endif
|